메뉴 건너뛰기




Volumn , Issue , 2014, Pages 548-555

Optimal decisions from probabilistic models: The intersection-over-union case

Author keywords

decision theory; structured prediction

Indexed keywords

APPROXIMATION ALGORITHMS; COMPUTER VISION; DECISION MAKING; IMAGE SEGMENTATION; LINEAR PROGRAMMING;

EID: 84911411712     PISSN: 10636919     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CVPR.2014.77     Document Type: Conference Paper
Times cited : (181)

References (50)
  • 4
    • 70350619001 scopus 로고    scopus 로고
    • Learning to localize objects with structured output regression
    • M. B. Blaschko and C. H. Lampert. Learning to localize objects with structured output regression. In ECCV, 2008.
    • (2008) ECCV
    • Blaschko, M.B.1    Lampert, C.H.2
  • 10
    • 84883162364 scopus 로고    scopus 로고
    • Learning graphical model parameters with approximate marginal inference
    • J. Domke. Learning graphical model parameters with approximate marginal inference. IEEE Trans. Pattern Anal. Mach. Intell, 35(10):2454-2467, 2013.
    • (2013) IEEE Trans. Pattern Anal. Mach. Intell , vol.35 , Issue.10 , pp. 2454-2467
    • Domke, J.1
  • 13
    • 78149478630 scopus 로고    scopus 로고
    • A fast approach for pixelwise labeling of facade images
    • B. Fröhlich, E. Rodner, and J. Denzler. A fast approach for pixelwise labeling of facade images. In ICPR, 2010.
    • (2010) ICPR
    • Fröhlich, B.1    Rodner, E.2    Denzler, J.3
  • 14
    • 84911440023 scopus 로고    scopus 로고
    • Semantic segmentation with millions of features: Integrating multiple cues in a combined random forest approach
    • B. Fröhlich, E. Rodner, and J. Denzler. Semantic segmentation with millions of features: Integrating multiple cues in a combined random forest approach. In ACCV, 2012.
    • (2012) ACCV
    • Fröhlich, B.1    Rodner, E.2    Denzler, J.3
  • 15
    • 0021518209 scopus 로고
    • Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images
    • S. Geman and D. Geman. Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE Trans. Pattern Anal. Mach. Intell, 6(6):721-741, 1984.
    • (1984) IEEE Trans. Pattern Anal. Mach. Intell , vol.6 , Issue.6 , pp. 721-741
    • Geman, S.1    Geman, D.2
  • 16
    • 77953205895 scopus 로고    scopus 로고
    • Decomposing a scene into geometric and semantically consistent regions
    • S. Gould, R. Fulton, and D. Koller. Decomposing a scene into geometric and semantically consistent regions. In ICCV, 2009.
    • (2009) ICCV
    • Gould, S.1    Fulton, R.2    Koller, D.3
  • 17
    • 0442280478 scopus 로고    scopus 로고
    • When does the expectation of a ratio equal the ratio of expectations?
    • R. Heijmans. When does the expectation of a ratio equal the ratio of expectations? Statistical Papers, 40, 1999.
    • (1999) Statistical Papers , vol.40
    • Heijmans, R.1
  • 19
    • 50649122028 scopus 로고    scopus 로고
    • Applications of parametric maxflow in computer vision
    • V. Kolmogorov, Y. Boykov, and C. Rother. Applications of parametric maxflow in computer vision. In ICCV, 2007.
    • (2007) ICCV
    • Kolmogorov, V.1    Boykov, Y.2    Rother, C.3
  • 20
    • 0002398911 scopus 로고
    • Parametric simplex algorithm for solving a special class of nonconvex minimization problems
    • H. Konno, Y. Yajima, and T. Matsui. Parametric simplex algorithm for solving a special class of nonconvex minimization problems. J. Glob. Opt., 1:65-81, 1991.
    • (1991) J. Glob. Opt. , vol.1 , pp. 65-81
    • Konno, H.1    Yajima, Y.2    Matsui, T.3
  • 21
    • 84897536915 scopus 로고    scopus 로고
    • Parameter learning and convergent inference for dense random fields
    • P. Krähenbühl and V. Koltun. Parameter learning and convergent inference for dense random fields. In ICML, 2013.
    • (2013) ICML
    • Krähenbühl, P.1    Koltun, V.2
  • 22
    • 77955997860 scopus 로고    scopus 로고
    • Efficiently selecting regions for scene understanding
    • P. M. Kumar and D. Koller. Efficiently selecting regions for scene understanding. In CVPR, 2010.
    • (2010) CVPR
    • Kumar, P.M.1    Koller, D.2
  • 23
  • 25
    • 84950881632 scopus 로고
    • Probabilistic solutions of ill-posed problems in computational vision
    • J. L. Marroquin, S. K. Mitter, and T. A. Poggio. Probabilistic solutions of ill-posed problems in computational vision. J. of the Am. Stat. Assoc., 82(397):293, 1987.
    • (1987) J. of the Am. Stat. Assoc. , vol.82 , Issue.397 , pp. 293
    • Marroquin, J.L.1    Mitter, S.K.2    Poggio, T.A.3
  • 26
    • 50149118484 scopus 로고    scopus 로고
    • Generalization bounds and consistency for structured labeling
    • MIT Press
    • D. McAllester. Generalization bounds and consistency for structured labeling. In Predicting Structured Data. MIT Press, 2007.
    • (2007) Predicting Structured Data
    • McAllester, D.1
  • 27
    • 84889092135 scopus 로고    scopus 로고
    • Risk of Bayesian inference in misspecified models, and the sandwich covariance matrix
    • U. K. Müller. Risk of Bayesian inference in misspecified models, and the sandwich covariance matrix. Econometrica, 81(5):1805-1849, 2013.
    • (2013) Econometrica , vol.81 , Issue.5 , pp. 1805-1849
    • Müller, U.K.1
  • 28
    • 84911440221 scopus 로고    scopus 로고
    • Pattern theory: The stochastic analysis of real-world signals
    • D. Mumford and A. Desolneux. Pattern Theory: The Stochastic Analysis of Real-World Signals. CRC, 2010.
    • (2010) CRC
    • Mumford, D.1    Desolneux, A.2
  • 29
    • 31844433358 scopus 로고    scopus 로고
    • Predicting good probabilities with supervised learning
    • A. Niculescu-Mizil and R. Caruana. Predicting good probabilities with supervised learning. In ICML, 2005.
    • (2005) ICML
    • Niculescu-Mizil, A.1    Caruana, R.2
  • 33
    • 84888141899 scopus 로고    scopus 로고
    • Learning low-order models for enforcing high-order statistics
    • P. Pletscher and P. Kohli. Learning low-order models for enforcing high-order statistics. In AISTATS, 2012.
    • (2012) AISTATS
    • Pletscher, P.1    Kohli, P.2
  • 35
    • 78149355239 scopus 로고    scopus 로고
    • Optimizing complex loss functions in structured prediction
    • M. Ranjbar, G. Mori, and Y. Wang. Optimizing complex loss functions in structured prediction. In ECCV, 2010.
    • (2010) ECCV
    • Ranjbar, M.1    Mori, G.2    Wang, Y.3
  • 37
    • 55149087864 scopus 로고    scopus 로고
    • A stochastic version of the price equation reveals the interplay of deterministic and stochastic processes in evolution
    • S. H. Rice. A stochastic version of the price equation reveals the interplay of deterministic and stochastic processes in evolution. BMC Evolutionary Biology, 8(1), 2008.
    • (2008) BMC Evolutionary Biology , vol.8 , Issue.1
    • Rice, S.H.1
  • 38
    • 0038487301 scopus 로고    scopus 로고
    • Fractional programming: The sum-of-ratios case
    • M. Fukushima and Y. Yuan, editors
    • S. Schaible and J. Shi. Fractional programming: the sum-of-ratios case. In M. Fukushima and Y. Yuan, editors, Proc. 2nd Japanese-Sino Opt. Meeting, pages 219-230, 2003.
    • (2003) Proc. 2nd Japanese-Sino Opt. Meeting , pp. 219-230
    • Schaible, S.1    Shi, J.2
  • 41
    • 51949114829 scopus 로고    scopus 로고
    • Semantic texton forests for image categorization and segmentation
    • J. Shotton, M. Johnson, and R. Cipolla. Semantic texton forests for image categorization and segmentation. In CVPR, 2008.
    • (2008) CVPR
    • Shotton, J.1    Johnson, M.2    Cipolla, R.3
  • 43
    • 84866681993 scopus 로고    scopus 로고
    • Revisiting uncertainty in graph cut solutions
    • D. Tarlow and R. P. Adams. Revisiting uncertainty in graph cut solutions. In CVPR, 2012.
    • (2012) CVPR
    • Tarlow, D.1    Adams, R.P.2
  • 45
    • 84877736193 scopus 로고    scopus 로고
    • Structured output learning with high order loss functions
    • D. Tarlow and R. S. Zemel. Structured output learning with high order loss functions. In AISTATS, 2012.
    • (2012) AISTATS
    • Tarlow, D.1    Zemel, R.S.2
  • 47
    • 84873190838 scopus 로고    scopus 로고
    • Superparsing-scalable nonpara-metric image parsing with superpixels
    • J. Tighe and S. Lazebnik. Superparsing-scalable nonpara-metric image parsing with superpixels. International Journal of Computer Vision, 101(2):329-349, 2013.
    • (2013) International Journal of Computer Vision , vol.101 , Issue.2 , pp. 329-349
    • Tighe, J.1    Lazebnik, S.2
  • 48
    • 0016025314 scopus 로고
    • On pricing and backward transformation in linear programming
    • J. A. Tomlin. On pricing and backward transformation in linear programming. Math. Prog., 6:42-47, 1974.
    • (1974) Math. Prog. , vol.6 , pp. 42-47
    • Tomlin, J.A.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.