메뉴 건너뛰기




Volumn , Issue , 2014, Pages 907-914

Compact representation for image classification: To choose or to compress?

Author keywords

[No Author keywords available]

Indexed keywords

DIMENSIONALITY REDUCTION; IMAGE CLASSIFICATION; REGRESSION ANALYSIS;

EID: 84911388666     PISSN: 10636919     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CVPR.2014.121     Document Type: Conference Paper
Times cited : (46)

References (30)
  • 3
    • 84898420173 scopus 로고    scopus 로고
    • The devil is in the details: An evaluation of recent feature encoding methods
    • K. Chatfield, V. Lempitsky, A. Vedaldi, and A. Zisserman. The devil is in the details: an evaluation of recent feature encoding methods. In BMVC, 2010.
    • (2010) BMVC
    • Chatfield, K.1    Lempitsky, V.2    Vedaldi, A.3    Zisserman, A.4
  • 4
    • 84887396870 scopus 로고    scopus 로고
    • Blessing of dimensionality: High-dimensional feature and its efficient compression for face verification
    • D. Chen, X. Cao, F. Wen, and J. Sun. Blessing of dimensionality: High-dimensional feature and its efficient compression for face verification. In CVPR, 2013.
    • (2013) CVPR
    • Chen, D.1    Cao, X.2    Wen, F.3    Sun, J.4
  • 7
    • 33645690579 scopus 로고    scopus 로고
    • Fast binary feature selection with conditional mutual information
    • F. Fleuret. Fast binary feature selection with conditional mutual information. JMLR, 5:1531-1555, 2004.
    • (2004) JMLR , vol.5 , pp. 1531-1555
    • Fleuret, F.1
  • 8
    • 84856654322 scopus 로고    scopus 로고
    • Discriminative learning of relaxed hierarchy for large-scale visual recognition
    • T. Gao and D. Koller. Discriminative learning of relaxed hierarchy for large-scale visual recognition. In ICCV, 2011.
    • (2011) ICCV
    • Gao, T.1    Koller, D.2
  • 9
    • 84887348338 scopus 로고    scopus 로고
    • Optimized product quantization for approximate nearest neighbor search
    • T. Ge, K. He, Q. Ke, and J. Sun. Optimized product quantization for approximate nearest neighbor search. In CVPR, 2013.
    • (2013) CVPR
    • Ge, T.1    He, K.2    Ke, Q.3    Sun, J.4
  • 10
    • 84887391600 scopus 로고    scopus 로고
    • Learning binary codes for high-dimensional data using bilinear projections
    • Y. Gong, S. Kumar, H. A. Rowley, and S. Lazebnik. Learning binary codes for high-dimensional data using bilinear projections. In CVPR, 2013.
    • (2013) CVPR
    • Gong, Y.1    Kumar, S.2    Rowley, H.A.3    Lazebnik, S.4
  • 11
    • 80052874105 scopus 로고    scopus 로고
    • Iterative quantization: A procrustean approach to learning binary codes
    • Y. Gong and S. Lazebnik. Iterative quantization: A procrustean approach to learning binary codes. In CVPR, 2011.
    • (2011) CVPR
    • Gong, Y.1    Lazebnik, S.2
  • 12
    • 78649317568 scopus 로고    scopus 로고
    • Product quantization for nearest neighbor search
    • H. Jégou, M. Douze, and C. Schmid. Product quantization for nearest neighbor search. IEEE Transactions on PAMI, 33(1):117-128, 2011.
    • (2011) IEEE Transactions on PAMI , vol.33 , Issue.1 , pp. 117-128
    • Jégou, H.1    Douze, M.2    Schmid, C.3
  • 13
    • 77956004473 scopus 로고    scopus 로고
    • Aggregating local descriptors into a compact image representation
    • H. Jégou, M. Douze, C. Schmid, and P. Perez. Aggregating local descriptors into a compact image representation. In CVPR, 2010.
    • (2010) CVPR
    • Jégou, H.1    Douze, M.2    Schmid, C.3    Perez, P.4
  • 15
    • 33845572523 scopus 로고    scopus 로고
    • Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories
    • S. Lazebnik, C. Schmid, and J. Ponce. Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories. In CVPR, 2006.
    • (2006) CVPR
    • Lazebnik, S.1    Schmid, C.2    Ponce, J.3
  • 16
    • 80052870284 scopus 로고    scopus 로고
    • Large-scale image classification: Fast feature extraction and SVM training
    • Y. Lin, F. Lv, S. Zhu, M. Yang, T. Cour, and K. Yu. Large-scale image classification: Fast feature extraction and SVM training. In CVPR, 2011.
    • (2011) CVPR
    • Lin, Y.1    Lv, F.2    Zhu, S.3    Yang, M.4    Cour, T.5    Yu, K.6
  • 18
    • 24344458137 scopus 로고    scopus 로고
    • Feature selection based on mutual information: Criteria of max-dependency, max-relevance, and min-redundancy
    • H. Peng, F. Long, and C. Ding. Feature selection based on mutual information: Criteria of max-dependency, max-relevance, and min-redundancy. IEEE Transactions on PAMI, 27(8):1226-1238, 2005.
    • (2005) IEEE Transactions on PAMI , vol.27 , Issue.8 , pp. 1226-1238
    • Peng, H.1    Long, F.2    Ding, C.3
  • 19
    • 84866652997 scopus 로고    scopus 로고
    • Towards good practice in large-scale learning for image classification
    • F. Perronnin, Z. Akata, Z. Harchaoui, and C. Schmid. Towards good practice in large-scale learning for image classification. In CVPR, 2012.
    • (2012) CVPR
    • Perronnin, F.1    Akata, Z.2    Harchaoui, Z.3    Schmid, C.4
  • 20
    • 34948815101 scopus 로고    scopus 로고
    • Fisher kernels on visual vocabularies for image categorization
    • F. Perronnin and C. Dance. Fisher kernels on visual vocabularies for image categorization. In CVPR, pages 1-8, 2007.
    • (2007) CVPR , pp. 1-8
    • Perronnin, F.1    Dance, C.2
  • 21
    • 77955992063 scopus 로고    scopus 로고
    • Large-scale image retrieval with compressed fisher vectors
    • F. Perronnin, Y. Liu, J. Sánchez, and H. Poirier. Large-scale image retrieval with compressed fisher vectors. In CVPR, 2010.
    • (2010) CVPR
    • Perronnin, F.1    Liu, Y.2    Sánchez, J.3    Poirier, H.4
  • 22
    • 80052885179 scopus 로고    scopus 로고
    • High-dimensional signature compression for large-scale image classification
    • J. Sánchez and F. Perronnin. High-dimensional signature compression for large-scale image classification. In CVPR, pages 1665-1672, 2011.
    • (2011) CVPR , pp. 1665-1672
    • Sánchez, J.1    Perronnin, F.2
  • 23
    • 84883487458 scopus 로고    scopus 로고
    • Image classification with the fisher vector: Theory and practice
    • J. Sánchez, F. Perronnin, T. Mensink, and J. Verbeek. Image classification with the fisher vector: Theory and practice. IJCV, 105(3):222-245, 2013.
    • (2013) IJCV , vol.105 , Issue.3 , pp. 222-245
    • Sánchez, J.1    Perronnin, F.2    Mensink, T.3    Verbeek, J.4
  • 25
    • 77956551904 scopus 로고    scopus 로고
    • Learning sparse svm for feature selection on very high dimensional datasets
    • M. Tan, L. Wang, and I. W. Tsang. Learning sparse svm for feature selection on very high dimensional datasets. In ICML, 2010.
    • (2010) ICML
    • Tan, M.1    Wang, L.2    Tsang, I.W.3
  • 26
    • 84866644207 scopus 로고    scopus 로고
    • Sparse kernel approximations for efficient classification and detection
    • A. Vedaldi and A. Zisserman. Sparse kernel approximations for efficient classification and detection. In CVPR, 2012.
    • (2012) CVPR
    • Vedaldi, A.1    Zisserman, A.2
  • 28
    • 77955988947 scopus 로고    scopus 로고
    • SUN database: Large-scale scene recognition from abbey to zoo
    • J. Xiao, J. Hays, K. A. Ehinger, A. Oliva, and A. Torralba. SUN database: Large-scale scene recognition from abbey to zoo. In CVPR, 2010.
    • (2010) CVPR
    • Xiao, J.1    Hays, J.2    Ehinger, K.A.3    Oliva, A.4    Torralba, A.5
  • 29
    • 84865422696 scopus 로고    scopus 로고
    • Recent advances of large-scale linear classification
    • G.-X. Yuan, C.-H. Ho, and C.-J. Lin. Recent advances of large-scale linear classification. Proceedings of the IEEE, 100:2584-2603, 2012.
    • (2012) Proceedings of the IEEE , vol.100 , pp. 2584-2603
    • Yuan, G.-X.1    Ho, C.-H.2    Lin, C.-J.3
  • 30
    • 80052886214 scopus 로고    scopus 로고
    • Image classification using super-vector coding of local image descriptors
    • X. Zhou, K. Yu, T. Zhang, and T. S. Huang. Image classification using super-vector coding of local image descriptors. In ECCV, 2010.
    • (2010) ECCV
    • Zhou, X.1    Yu, K.2    Zhang, T.3    Huang, T.S.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.