메뉴 건너뛰기




Volumn 48, Issue 2, 2015, Pages 605-612

Noise-robust semi-supervised learning via fast sparse coding

Author keywords

Graph based semi supervised learning; Laplacian regularization; Noise reduction; Noise robust image classification; Sparse coding

Indexed keywords

BENCHMARKING; EIGENVALUES AND EIGENFUNCTIONS; GRAPH ALGORITHMS; GRAPH THEORY; GRAPHIC METHODS; IMAGE CLASSIFICATION; IMAGE CODING; LAPLACE TRANSFORMS; LEARNING ALGORITHMS; MATRIX ALGEBRA; NOISE ABATEMENT;

EID: 84910157075     PISSN: 00313203     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.patcog.2014.08.019     Document Type: Article
Times cited : (36)

References (48)
  • 1
    • 32044458124 scopus 로고    scopus 로고
    • An algorithm for semi-supervised learning in image retrieval
    • K. Lu, J. Zhao, and D. Cai An algorithm for semi-supervised learning in image retrieval Pattern Recognit. 39 4 2006 717 720
    • (2006) Pattern Recognit. , vol.39 , Issue.4 , pp. 717-720
    • Lu, K.1    Zhao, J.2    Cai, D.3
  • 2
    • 67649880294 scopus 로고    scopus 로고
    • Semi-supervised bilinear subspace learning
    • D. Xu, and S. Yan Semi-supervised bilinear subspace learning IEEE Trans. Image Process. 18 7 2009 1671 1676
    • (2009) IEEE Trans. Image Process. , vol.18 , Issue.7 , pp. 1671-1676
    • Xu, D.1    Yan, S.2
  • 3
    • 77949723232 scopus 로고    scopus 로고
    • Combining context, consistency, and diversity cues for interactive image categorization
    • Z. Lu, and H. Ip Combining context, consistency, and diversity cues for interactive image categorization IEEE Trans. Multimed. 12 3 2010 194 203
    • (2010) IEEE Trans. Multimed. , vol.12 , Issue.3 , pp. 194-203
    • Lu, Z.1    Ip, H.2
  • 5
    • 72449199441 scopus 로고    scopus 로고
    • Inferring semantic concepts from community-contributed images and noisy tags
    • J. Tang, S. Yan, R. Hong, G.-J. Qi, T.-S. Chua, Inferring semantic concepts from community-contributed images and noisy tags, in: Proceedings of ACM Multimedia, 2009, pp. 223-232.
    • (2009) Proceedings of ACM Multimedia , pp. 223-232
    • Tang, J.1    Yan, S.2    Hong, R.3    Qi, G.-J.4    Chua, T.-S.5
  • 6
    • 53549116749 scopus 로고    scopus 로고
    • Image annotation via graph learning
    • J. Liu, M. Li, Q. Liu, H. Lu, and S. Ma Image annotation via graph learning Pattern Recognit. 42 2 2009 218 228
    • (2009) Pattern Recognit. , vol.42 , Issue.2 , pp. 218-228
    • Liu, J.1    Li, M.2    Liu, Q.3    Lu, H.4    Ma, S.5
  • 7
    • 0031620208 scopus 로고    scopus 로고
    • Combining labeled and unlabeled data with co-training
    • A. Blum, T. Mitchell, Combining labeled and unlabeled data with co-training, in: Proceedings of COLT, 1998.
    • (1998) Proceedings of COLT
    • Blum, A.1    Mitchell, T.2
  • 8
    • 1942484430 scopus 로고    scopus 로고
    • Semi-supervised learning using Gaussian fields and harmonic functions
    • X. Zhu, Z. Ghahramani, J. Lafferty, Semi-supervised learning using Gaussian fields and harmonic functions, in: Proceedings of ICML, 2003, pp. 912-919.
    • (2003) Proceedings of ICML , pp. 912-919
    • Zhu, X.1    Ghahramani, Z.2    Lafferty, J.3
  • 9
    • 84899006908 scopus 로고    scopus 로고
    • Learning with local and global consistency
    • D. Zhou, O. Bousquet, T. Lal, J. Weston, B. Schölkopf, Learning with local and global consistency, in: Advances in Neural Information Processing Systems, vol. 16, 2004, pp. 321-328.
    • (2004) Advances in Neural Information Processing Systems , vol.16 , pp. 321-328
    • Zhou, D.1
  • 10
    • 33750729556 scopus 로고    scopus 로고
    • Manifold regularization a geometric framework for learning from labeled and unlabeled examples
    • M. Belkin, P. Niyogi, and V. Sindhwani Manifold regularization a geometric framework for learning from labeled and unlabeled examples J. Mach. Learn. Res. 7 48 2006 2399 2434
    • (2006) J. Mach. Learn. Res. , vol.7 , Issue.48 , pp. 2399-2434
    • Belkin, M.1    Niyogi, P.2    Sindhwani, V.3
  • 11
    • 36648998944 scopus 로고    scopus 로고
    • Label propagation through linear neighborhoods
    • F. Wang, and C. Zhang Label propagation through linear neighborhoods IEEE Trans. Knowl. Data Eng. 20 1 2008 55 67
    • (2008) IEEE Trans. Knowl. Data Eng. , vol.20 , Issue.1 , pp. 55-67
    • Wang, F.1    Zhang, C.2
  • 12
    • 77249095854 scopus 로고    scopus 로고
    • Semi-supervised learning by sparse representation
    • S. Yan, H. Wang, Semi-supervised learning by sparse representation, in: Proceedings of SDM, 2009, pp. 792-801.
    • (2009) Proceedings of SDM , pp. 792-801
    • Yan, S.1    Wang, H.2
  • 14
    • 77956555216 scopus 로고    scopus 로고
    • Large graph construction for scalable semi-supervised learning
    • W. Liu, J. He, S.-F. Chang, Large graph construction for scalable semi-supervised learning, in: Proceedings of ICML, 2010, pp. 679-686.
    • (2010) Proceedings of ICML , pp. 679-686
    • Liu, W.1    He, J.2    Chang, S.-F.3
  • 15
    • 78649330593 scopus 로고    scopus 로고
    • Efficient region-aware large graph construction towards scalable multi-label propagation
    • B.-K. Bao, B. Ni, Y. Mu, and S. Yan Efficient region-aware large graph construction towards scalable multi-label propagation Pattern Recognit. 44 3 2011 598 606
    • (2011) Pattern Recognit. , vol.44 , Issue.3 , pp. 598-606
    • Bao, B.-K.1    Ni, B.2    Mu, Y.3    Yan, S.4
  • 16
    • 84866660023 scopus 로고    scopus 로고
    • Non-negative low rank and sparse graph for semi-supervised learning
    • L. Zhuang, H. Gao, Z. Lin, Y. Ma, X. Zhang, N. Yu, Non-negative low rank and sparse graph for semi-supervised learning, in: Proceedings of CVPR, 2012, pp. 2328-2335.
    • (2012) Proceedings of CVPR , pp. 2328-2335
    • Zhuang, L.1    Gao, H.2    Lin, Z.3    Ma, Y.4    Zhang, X.5    Yu, N.6
  • 17
    • 84885841484 scopus 로고    scopus 로고
    • Manifold-preserving graph reduction for sparse semi-supervised learning
    • S. Sun, Z. Hussain, and J. Shawe-Taylor Manifold-preserving graph reduction for sparse semi-supervised learning Neurocomputing 124 2014 13 21
    • (2014) Neurocomputing , vol.124 , pp. 13-21
    • Sun, S.1    Hussain, Z.2    Shawe-Taylor, J.3
  • 19
    • 84878727865 scopus 로고    scopus 로고
    • Exhaustive and efficient constraint propagation a graph-based learning approach and its applications
    • Z. Lu, and Y. Peng Exhaustive and efficient constraint propagation a graph-based learning approach and its applications Int. J. Comput. Vis. 103 3 2013 306 325
    • (2013) Int. J. Comput. Vis. , vol.103 , Issue.3 , pp. 306-325
    • Lu, Z.1    Peng, Y.2
  • 20
    • 33751379736 scopus 로고    scopus 로고
    • Image denoising via sparse and redundant representations over learned dictionaries
    • M. Elad, and M. Aharon Image denoising via sparse and redundant representations over learned dictionaries IEEE Trans. Image Process. 15 12 2006 3736 3745
    • (2006) IEEE Trans. Image Process. , vol.15 , Issue.12 , pp. 3736-3745
    • Elad, M.1    Aharon, M.2
  • 21
    • 39149089704 scopus 로고    scopus 로고
    • Sparse representation for color image restoration
    • J. Mairal, M. Elad, and G. Sapiro Sparse representation for color image restoration IEEE Trans. Image Process. 17 1 2008 53 69
    • (2008) IEEE Trans. Image Process. , vol.17 , Issue.1 , pp. 53-69
    • Mairal, J.1    Elad, M.2    Sapiro, G.3
  • 24
    • 85014561619 scopus 로고    scopus 로고
    • A fast iterative shrinkage-thresholding algorithm for linear inverse problems
    • A. Beck, and M. Teboulle A fast iterative shrinkage-thresholding algorithm for linear inverse problems SIAM J. Imaging Sci. 2 1 2009 183 202
    • (2009) SIAM J. Imaging Sci. , vol.2 , Issue.1 , pp. 183-202
    • Beck, A.1    Teboulle, M.2
  • 25
    • 33646365077 scopus 로고    scopus 로고
    • 1-norm solution is also the sparsest solution
    • 1-norm solution is also the sparsest solution Commun. Pure Appl. Math. 59 7 2004 797 829
    • (2004) Commun. Pure Appl. Math. , vol.59 , Issue.7 , pp. 797-829
    • Donoho, D.1
  • 26
    • 0034215549 scopus 로고    scopus 로고
    • A new approach to variable selection in least squares problems
    • M. Osborne, B. Presnell, and B. Turlach A new approach to variable selection in least squares problems IMA J. Numer. Anal. 20 3 2000 389 403
    • (2000) IMA J. Numer. Anal. , vol.20 , Issue.3 , pp. 389-403
    • Osborne, M.1    Presnell, B.2    Turlach, B.3
  • 27
    • 39449126969 scopus 로고    scopus 로고
    • Gradient projection for sparse reconstruction application to compressed sensing and other inverse problems
    • M. Figueiredo, R. Nowak, and S. Wright Gradient projection for sparse reconstruction application to compressed sensing and other inverse problems IEEE J. Sel. Top. Signal Process. 1 4 2007 586 597
    • (2007) IEEE J. Sel. Top. Signal Process. , vol.1 , Issue.4 , pp. 586-597
    • Figueiredo, M.1    Nowak, R.2    Wright, S.3
  • 29
    • 85194972808 scopus 로고    scopus 로고
    • Regression shrinkage and selection via the Lasso
    • R. Tibshirani Regression shrinkage and selection via the Lasso J. R. Stat. Soc. Ser. B 58 1 1996 267 288
    • (1996) J. R. Stat. Soc. Ser. B , vol.58 , Issue.1 , pp. 267-288
    • Tibshirani, R.1
  • 30
    • 77955405900 scopus 로고    scopus 로고
    • Feature selection guided by structural information
    • M. Slawski, W. zu Castell, and G. Tutz Feature selection guided by structural information Ann. Appl. Stat. 4 2 2010 1056 1080
    • (2010) Ann. Appl. Stat. , vol.4 , Issue.2 , pp. 1056-1080
    • Slawski, M.1    Zu Castell, W.2    Tutz, G.3
  • 31
    • 84874031618 scopus 로고    scopus 로고
    • Heterogeneous constraint propagation with constrained sparse representation
    • Z. Lu, Y. Peng, Heterogeneous constraint propagation with constrained sparse representation, in: Proceedings of ICDM, 2012, pp. 1002-1007.
    • (2012) Proceedings of ICDM , pp. 1002-1007
    • Lu, Z.1    Peng, Y.2
  • 32
    • 79955855934 scopus 로고    scopus 로고
    • Laplacian support vector machines trained in the primal
    • S. Melacci, and M. Belkin Laplacian support vector machines trained in the primal J. Mach. Learn. Res. 12 2011 1149 1184
    • (2011) J. Mach. Learn. Res. , vol.12 , pp. 1149-1184
    • Melacci, S.1    Belkin, M.2
  • 34
    • 78649409198 scopus 로고    scopus 로고
    • Sparse semi-supervised learning using conjugate functions
    • S. Sun, and J. Shawe-Taylor Sparse semi-supervised learning using conjugate functions J. Mach. Learn. Res. 11 2010 2423 2455
    • (2010) J. Mach. Learn. Res. , vol.11 , pp. 2423-2455
    • Sun, S.1    Shawe-Taylor, J.2
  • 35
    • 84881061407 scopus 로고    scopus 로고
    • A second order cone programming approach for semi-supervised learning
    • G. Huang, S. Song, J.N. Gupta, and C. Wu A second order cone programming approach for semi-supervised learning Pattern Recognit. 46 12 2013 3548 3558
    • (2013) Pattern Recognit. , vol.46 , Issue.12 , pp. 3548-3558
    • Huang, G.1    Song, S.2    Gupta, J.N.3    Wu, C.4
  • 36
    • 84897560409 scopus 로고    scopus 로고
    • Label propagation through minimax paths for scalable semi-supervised learning
    • K.-H. Kim, and S. Choi Label propagation through minimax paths for scalable semi-supervised learning Pattern Recognit. Lett. 45 2014 17 25
    • (2014) Pattern Recognit. Lett. , vol.45 , pp. 17-25
    • Kim, K.-H.1    Choi, S.2
  • 37
    • 84893674326 scopus 로고    scopus 로고
    • Kernel-based transition probability toward similarity measure for semi-supervised learning
    • T. Kobayashi Kernel-based transition probability toward similarity measure for semi-supervised learning Pattern Recognit. 47 5 2014 1994 2010
    • (2014) Pattern Recognit. , vol.47 , Issue.5 , pp. 1994-2010
    • Kobayashi, T.1
  • 39
    • 77955994285 scopus 로고    scopus 로고
    • Local features are not lonely - Laplacian sparse coding for image classification
    • S. Gao, I. Tsang, L.-T. Chia, P. Zhao, Local features are not lonely - Laplacian sparse coding for image classification, in: Proceedings of CVPR, 2010, pp. 3555-3561.
    • (2010) Proceedings of CVPR , pp. 3555-3561
    • Gao, S.1    Tsang, I.2    Chia, L.-T.3    Zhao, P.4
  • 40
    • 80053139009 scopus 로고    scopus 로고
    • Smoothing proximal gradient method for general structured sparse learning
    • X. Chen, Q. Lin, S. Kim, J.G. Carbonell, E.P. Xing, Smoothing proximal gradient method for general structured sparse learning, in: Proceedings of UAI, 2011, pp. 105-114.
    • (2011) Proceedings of UAI , pp. 105-114
    • Chen, X.1    Lin, Q.2    Kim, S.3    Carbonell, J.G.4    Xing, E.P.5
  • 41
    • 84867114870 scopus 로고    scopus 로고
    • Pairwise fused Lasso
    • Department of Statistics, University of Munich
    • S. Petry, C. Flexeder, G. Tutz, Pairwise fused Lasso, Technical Report 102, Department of Statistics, University of Munich, 2011.
    • (2011) Technical Report 102
    • Petry, S.1    Flexeder, C.2    Tutz, G.3
  • 42
    • 27244449175 scopus 로고    scopus 로고
    • Regularization on discrete spaces
    • D. Zhou, B. Scholköpf, Regularization on discrete spaces, in: Proceedings of DAGM, 2005, pp. 361-368.
    • (2005) Proceedings of DAGM , pp. 361-368
    • Zhou, D.1
  • 46
    • 56449131204 scopus 로고    scopus 로고
    • An RKHS for multi-view learning and manifold coregularization
    • V. Sindhwani, D. Rosenberg, An RKHS for multi-view learning and manifold coregularization, in: Proceedings of ICML, 2008, pp. 976-983.
    • (2008) Proceedings of ICML , pp. 976-983
    • Sindhwani, V.1    Rosenberg, D.2
  • 47
    • 79960700643 scopus 로고    scopus 로고
    • Spatial Markov kernels for image categorization and annotation
    • Z. Lu, and H. Ip Spatial Markov kernels for image categorization and annotation IEEE Trans. Syst. Man Cybern. Part B 41 4 2011 976 989
    • (2011) IEEE Trans. Syst. Man Cybern. Part B , vol.41 , Issue.4 , pp. 976-989
    • Lu, Z.1    Ip, H.2
  • 48
    • 51949086172 scopus 로고    scopus 로고
    • Semi-supervised classification by low density separation
    • O. Chapelle, A. Zien, Semi-supervised classification by low density separation, in: Proceedings of AISTATS, 2005, pp. 57-64.
    • (2005) Proceedings of AISTATS , pp. 57-64
    • Chapelle, O.1    Zien, A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.