메뉴 건너뛰기




Volumn , Issue , 2012, Pages 631-640

Motion primitive-based human activity recognition using a Bag-of-Features approach

Author keywords

Bag of Features; Human activity recognition; Motion primitives; Pattern recognition; Pervasive healthcare; Wearable sensing technologies

Indexed keywords

BAG-OF-FEATURES; HUMAN ACTIVITY RECOGNITION; MOTION PRIMITIVES; PERVASIVE HEALTHCARE; WEARABLE SENSING;

EID: 84863296647     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/2110363.2110433     Document Type: Conference Paper
Times cited : (118)

References (20)
  • 6
    • 84907905296 scopus 로고    scopus 로고
    • Gestures are strings: Efficient online gesture spotting and classification using string matching
    • Florence, Italy
    • Thomas Stiefmeier, Daniel Roggen, and Gerhard Tröster. Gestures are strings: efficient online gesture spotting and classification using string matching. In International Conference on Body Area Networks (BodyNets), pages 16:1-16:8, Florence, Italy, 2007.
    • (2007) International Conference on Body Area Networks (BodyNets) , pp. 161-168
    • Stiefmeier, T.1    Roggen, D.2    Tröster, G.3
  • 8
    • 77954494367 scopus 로고    scopus 로고
    • Collaborative signal processing for action recognition in body sensor networks: A distributed classification algorithm using motion transcripts
    • Stockholm, Sweden
    • Hassan Ghasemzadeh, Vitali Loseu, and Roozbeh Jafari. Collaborative signal processing for action recognition in body sensor networks: a distributed classification algorithm using motion transcripts. In ACM/IEEE International Conference on Information Processing in Sensor Networks (IPSN), pages 244-255, Stockholm, Sweden, 2010.
    • (2010) ACM/IEEE International Conference on Information Processing in Sensor Networks (IPSN) , pp. 244-255
    • Ghasemzadeh, H.1    Loseu, V.2    Jafari, R.3
  • 10
    • 33846580425 scopus 로고    scopus 로고
    • Local features and kernels for classification of texture and object categories: A comprehensive study
    • DOI 10.1007/s11263-006-9794-4
    • Jianguo Zhang, Marcin Marszalek, Svetlana Lazebnik, and Cordelia Schmid. Local features and kernels for classification of texture and object categories: A comprehensive study. International Journal of Computer Vision, 73:213-238, June 2007. (Pubitemid 46181625)
    • (2007) International Journal of Computer Vision , vol.73 , Issue.2 , pp. 213-238
    • Zhang, J.1    Marszalek, M.2    Lazebnik, S.3    Schmid, C.4
  • 11
    • 35048842427 scopus 로고    scopus 로고
    • Activity recognition from user-annotated acceleration data
    • Linz/Vienna, Austria
    • Ling Bao and Stephen S. Intille. Activity recognition from user-annotated acceleration data. In International Conference on Pervasive Computing, pages 1-17, Linz/Vienna, Austria, 2004.
    • (2004) International Conference on Pervasive Computing , pp. 1-17
    • Bao, L.1    Intille, S.S.2
  • 12
    • 29344474528 scopus 로고    scopus 로고
    • Activity recognition from accelerometer data
    • Proceedings of the 20th National Conference on Artificial Intelligence and the 17th Innovative Applications of Artificial Intelligence Conference, AAAI-05/IAAI-05
    • Nishkam Ravi, Nikhil Dandekar, Prreetham Mysore, and Michael L. Littman. Activity recognition from accelerometer data. In Conference on Innovative Applications of Artificial Intelligence (IAAI), pages 1541-1546, Pittsburgh, Pennsylvania, USA, 2005. (Pubitemid 43006650)
    • (2005) Proceedings of the National Conference on Artificial Intelligence , vol.3 , pp. 1541-1546
    • Ravi, N.1    Dandekar, N.2    Mysore, P.3    Littman, M.L.4
  • 14
    • 84863238373 scopus 로고    scopus 로고
    • http://www.motionnode.com.
  • 16
    • 78649453016 scopus 로고    scopus 로고
    • Unsupervised, dynamic identification of physiological and activity context in wearable computing
    • White Plains, NY, USA
    • Andreas Krause, Daniel P. Siewiorek, Asim Smailagic, and Jonny Farringdon. Unsupervised, dynamic identification of physiological and activity context in wearable computing. In IEEE International Symposium Wearable Computers (ISWC), pages 88-97, White Plains, NY, USA, 2003.
    • (2003) IEEE International Symposium Wearable Computers (ISWC) , pp. 88-97
    • Krause, A.1    Siewiorek, D.P.2    Smailagic, A.3    Farringdon, J.4
  • 17
    • 84923739550 scopus 로고    scopus 로고
    • A feature selection-based framework for human activity recognition using wearable multimodal sensors
    • Beijing, China November
    • Mi Zhang and Alexander A. Sawchuk. A feature selection-based framework for human activity recognition using wearable multimodal sensors. In International Conference on Body Area Networks (BodyNets), Beijing, China, November 2011.
    • (2011) International Conference on Body Area Networks (BodyNets)
    • Zhang, M.1    Sawchuk, A.A.2
  • 18
    • 30744436064 scopus 로고    scopus 로고
    • Implementation of a real-time human movement classifier using a triaxial accelerometer for ambulatory monitoring
    • DOI 10.1109/TITB.2005.856864
    • Dean M. Karantonis, Michael R. Narayanan, Merryn Mathie, Nigel H. Lovell, and Branko G. Celler. Implementation of a Real-Time Human Movement Classifier Using a Triaxial Accelerometer for Ambulatory Monitoring. IEEE Transactions on Information Technology in Biomedicine, 10(1):156-167, 2006. (Pubitemid 43092328)
    • (2006) IEEE Transactions on Information Technology in Biomedicine , vol.10 , Issue.1 , pp. 156-167
    • Karantonis, D.M.1    Narayanan, M.R.2    Mathie, M.3    Lovell, N.H.4    Celler, B.G.5
  • 19
    • 78049383639 scopus 로고    scopus 로고
    • A practical guide to support vector classification
    • Chih-Chung Chang Chih-Wei Hsu and Chih-Jen Lin. A practical guide to support vector classification. Bioinformatics, 1(1):1-16, 2010.
    • (2010) Bioinformatics , vol.1 , Issue.1 , pp. 1-16
    • Chang, C.-C.1    Hsu, C.-W.2    Lin, C.-J.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.