메뉴 건너뛰기




Volumn 47, Issue 2, 2015, Pages

Automated generation of music playlists: Survey and experiments

Author keywords

Algorithm; Evaluation; Music; Playlist

Indexed keywords

AUTOMATION; COMPUTATION THEORY;

EID: 84910034721     PISSN: 03600300     EISSN: 15577341     Source Type: Journal    
DOI: 10.1145/2652481     Document Type: Review
Times cited : (211)

References (125)
  • 1
    • 0027621699 scopus 로고
    • Mining association rules between sets of items in large databases
    • Rakesh Agrawal, Tomasz Imieliński, and Arun Swami. 1993. Mining association rules between sets of items in large databases. In Proceedings of SIGMOD. 207-216.
    • (1993) Proceedings of SIGMOD , pp. 207-216
    • Agrawal, R.1    Imieliński, T.2    Swami, A.3
  • 3
    • 84860850270 scopus 로고    scopus 로고
    • Build your own music recommender by modeling internet radio streams
    • Natalie Aizenberg, Yehuda Koren, and Oren Somekh. 2012. Build your own music recommender by modeling internet radio streams. In Proceedings of WWW. 1-10.
    • (2012) Proceedings of WWW , pp. 1-10
    • Aizenberg, N.1    Koren, Y.2    Somekh, O.3
  • 5
    • 84908301702 scopus 로고    scopus 로고
    • A network flowmodel for playlist generation
    • Masoud Alghoniemy and Ahmed H Tewfik. 2001. A network flowmodel for playlist generation. In Proceedings of ICME. 445-448.
    • (2001) Proceedings of ICME , pp. 445-448
    • Alghoniemy, M.1    Tewfik, A.H.2
  • 7
    • 33847065888 scopus 로고    scopus 로고
    • Estimating quality of playlists by sight
    • Andreja Andric and Goffredo Haus. 2005. Estimating quality of playlists by sight. In Proceedings of AXMEDIS. 68-74.
    • (2005) Proceedings of AXMEDIS , pp. 68-74
    • Andric, A.1    Haus, G.2
  • 9
    • 2942734796 scopus 로고    scopus 로고
    • Music similarity measures: What's the use?
    • Jean-Julien Aucouturier and Franc¸ois Pachet. 2002b. Music similarity measures: What's the use? In Proceedings of ISMIR. 157-163.
    • (2002) Proceedings of ISMIR , pp. 157-163
    • Aucouturier, J.-J.1    Pachet, F.2
  • 10
    • 84908354532 scopus 로고    scopus 로고
    • Scaling up music playlist generation
    • Jean-Julien Aucouturier and Franc¸ois Pachet. 2002c. Scaling up music playlist generation. In Proceedings of ICME, Vol. 1. 105-108.
    • (2002) Proceedings of ICME , vol.1 , pp. 105-108
    • Aucouturier, J.-J.1    Pachet, F.2
  • 11
    • 33750977571 scopus 로고    scopus 로고
    • Case-based sequential ordering of songs for playlist recommendation
    • Claudio Baccigalupo and Enric Plaza. 2006. Case-based sequential ordering of songs for playlist recommendation. In Proceedings of ECCBR. 286-300.
    • (2006) Proceedings of ECCBR , pp. 286-300
    • Baccigalupo, C.1    Plaza, E.2
  • 12
    • 38049033045 scopus 로고    scopus 로고
    • A case-based song scheduler for group customised radio
    • Case-Based Reasoning Research and Development. Springer
    • Claudio Baccigalupo and Enric Plaza. 2007. A case-based song scheduler for group customised radio. In Case-Based Reasoning Research and Development. Lecture Notes in Computer Science, Vol. 4626. Springer, 433-448.
    • (2007) Lecture Notes in Computer Science , vol.4626 , pp. 433-448
    • Baccigalupo, C.1    Plaza, E.2
  • 14
    • 77953139735 scopus 로고    scopus 로고
    • Music playlist generation by assimilating GMMs into SOMs
    • Wietse Balkema and Ferdi van der Heijden. 2010. Music playlist generation by assimilating GMMs into SOMs. Pattern Recognition Letters 31, 11, 1396-1402.
    • (2010) Pattern Recognition Letters , vol.31 , Issue.11 , pp. 1396-1402
    • Balkema, W.1    Van Der Heijden, F.2
  • 15
    • 84873683421 scopus 로고    scopus 로고
    • Smarter than genius? Human evaluation of music recommender systems
    • Luke Barrington, Reid Oda, and Gert R. G. Lanckriet. 2009. Smarter than genius? Human evaluation of music recommender systems. In Proceedings of ISMIR. 357-362.
    • (2009) Proceedings of ISMIR , pp. 357-362
    • Barrington, L.1    Oda, R.2    Lanckriet, G.R.G.3
  • 17
    • 77951107795 scopus 로고    scopus 로고
    • Rush: Repeated recommendations on mobile devices
    • Dominikus Baur, Sebastian Boring, and Andreas Butz. 2010. Rush: Repeated recommendations on mobile devices. In Proceedings of IUI. 91-100.
    • (2010) Proceedings of IUI , pp. 91-100
    • Baur, D.1    Boring, S.2    Butz, A.3
  • 21
    • 4243471699 scopus 로고    scopus 로고
    • Method and Article of Manufacture for Content-Based Analysis, Storage, Retrieval, and Segmentation of Audio Information
    • U.S. Patent
    • Thomas L. Blum, Douglas F. Keislar, James A. Wheaton, and Erling H. Wold. 1999. Method and Article of Manufacture for Content-Based Analysis, Storage, Retrieval, and Segmentation of Audio Information. U.S. Patent 5,918,223.
    • (1999)
    • Blum, T.L.1    Keislar, D.F.2    Wheaton, J.A.3    Wold, E.H.4
  • 22
    • 84873595124 scopus 로고    scopus 로고
    • How much metadata do we need in music recommendation? A subjective evaluation using preference sets
    • Dmitry Bogdanov and Perfecto Herrera. 2011. How much metadata do we need in music recommendation? A subjective evaluation using preference sets. In Proceedings of ISMIR. 97-102.
    • (2011) Proceedings of ISMIR , pp. 97-102
    • Bogdanov, D.1    Herrera, P.2
  • 23
    • 84898915026 scopus 로고    scopus 로고
    • A comparison of playlist generation strategies for music recommendation and a new baseline scheme
    • Geoffray Bonnin and Dietmar Jannach. 2013a. A comparison of playlist generation strategies for music recommendation and a new baseline scheme. In Proceedings of ITWP. 16-23.
    • (2013) Proceedings of ITWP , pp. 16-23
    • Bonnin, G.1    Jannach, D.2
  • 24
    • 85032556444 scopus 로고    scopus 로고
    • Evaluating the quality of playlists based on hand-crafted samples
    • Geoffray Bonnin and Dietmar Jannach. 2013b. Evaluating the quality of playlists based on hand-crafted samples. In Proceedings of ISMIR. 263-268.
    • (2013) Proceedings of ISMIR , pp. 263-268
    • Bonnin, G.1    Jannach, D.2
  • 25
    • 84873695311 scopus 로고    scopus 로고
    • Evaluating and analysing dynamic playlist generation heuristics using radio logs and fuzzy set theory
    • Klaas Bosteels, Elias Pampalk, and Etienne E. Kerre. 2009. Evaluating and analysing dynamic playlist generation heuristics using radio logs and fuzzy set theory. In Proceedings of ISMIR. 351-356.
    • (2009) Proceedings of ISMIR , pp. 351-356
    • Bosteels, K.1    Pampalk, E.2    Kerre, E.E.3
  • 26
    • 84874237312 scopus 로고    scopus 로고
    • Probability based playlist generation based on music similarity and user customization
    • Karan Kumar Budhraja, Ashutosh Singh, Gaurav Dubey, and Arun Khosla. 2012. Probability based playlist generation based on music similarity and user customization. In Proceedings of NCCCS. 1-5.
    • (2012) Proceedings of NCCCS , pp. 1-5
    • Budhraja, K.K.1    Singh, A.2    Dubey, G.3    Khosla, A.4
  • 27
    • 0036959356 scopus 로고    scopus 로고
    • Hybrid recommender systems: Survey and experiments
    • Robin Burke. 2002. Hybrid recommender systems: Survey and experiments. User Modeling and User-Adapted Interaction 12, 4, 331-370.
    • (2002) User Modeling and User-Adapted Interaction , vol.12 , Issue.4 , pp. 331-370
    • Burke, R.1
  • 28
    • 0000732463 scopus 로고
    • A limited memory algorithm for bound constrained optimization
    • Richard H. Byrd, Peihuang Lu, Jorge Nocedal, and Ciyou Zhu. 1995. A limited memory algorithm for bound constrained optimization. SIAM Journal on Scientific Computing 16, 5, 1190-1208.
    • (1995) SIAM Journal on Scientific Computing , vol.16 , Issue.5 , pp. 1190-1208
    • Byrd, R.H.1    Lu, P.2    Nocedal, J.3    Zhu, C.4
  • 32
    • 71549124695 scopus 로고    scopus 로고
    • A Web recommender system for recommending, predicting and personalizing music playlists
    • Zeina Chedrawy and Syed Sibte Raza Abidi. 2009. A Web recommender system for recommending, predicting and personalizing music playlists. In Proceedings of WISE. 335-342.
    • (2009) Proceedings of WISE , pp. 335-342
    • Chedrawy, Z.1    Abidi, S.S.R.2
  • 33
    • 77950857056 scopus 로고    scopus 로고
    • Towards a class-based representation of perceptual tempo for music retrieval
    • Ching-Wei Chen, Kyogu Lee, and Ho-Hsiang Wu. 2009. Towards a class-based representation of perceptual tempo for music retrieval. In Proceedings of ICMLA. 602-607.
    • (2009) Proceedings of ICMLA , pp. 602-607
    • Chen, C.-W.1    Lee, K.2    Wu, H.-H.3
  • 35
    • 84055212207 scopus 로고    scopus 로고
    • A system for dynamic playlist generation driven by multimodal control signals and descriptors
    • Luca Chiarandini, Massimiliano Zanoni, and Augusto Sarti. 2011. A system for dynamic playlist generation driven by multimodal control signals and descriptors. In Proceedings of MMSP. 1-6.
    • (2011) Proceedings of MMSP , pp. 1-6
    • Chiarandini, L.1    Zanoni, M.2    Sarti, A.3
  • 36
    • 80051984032 scopus 로고    scopus 로고
    • hpDJ: An automated DJ with floorshow feedback
    • Consuming Music Together. Springer
    • Dave Cliff. 2006. hpDJ: An automated DJ with floorshow feedback. In Consuming Music Together. Computer Supported Cooperative Work, Vol. 35. Springer, 241-264.
    • (2006) Computer Supported Cooperative Work , vol.35 , pp. 241-264
    • Cliff, D.1
  • 37
    • 85206042689 scopus 로고    scopus 로고
    • Large-scale crossmedia retrieval for playlist generation and song discovery
    • Filipe Coelho, José Devezas, and Cristina Ribeiro. 2013. Large-scale crossmedia retrieval for playlist generation and song discovery. In Proceedings of OAIR. 61-64.
    • (2013) Proceedings of OAIR , pp. 61-64
    • Coelho, F.1    Devezas, J.2    Ribeiro, C.3
  • 38
    • 36949012232 scopus 로고    scopus 로고
    • Automatic playlist composition in a dynamic music landscape
    • Michel Crampes, Jean Villerd, Andrew Emery, and Sylvie Ranwez. 2007. Automatic playlist composition in a dynamic music landscape. In Proceedings of SADPI . 15-20.
    • (2007) Proceedings of SADPI , pp. 15-20
    • Crampes, M.1    Villerd, J.2    Emery, A.3    Ranwez, S.4
  • 39
    • 80052799945 scopus 로고    scopus 로고
    • Looking for "good" recommendations: A comparative evaluation of recommender systems
    • Paolo Cremonesi, Franca Garzotto, Sara Negro, Alessandro Vittorio Papadopoulos, and Roberto Turrin. 2011. Looking for "good" recommendations: A comparative evaluation of recommender systems. In Proceedings of INTERACT . 152-168.
    • (2011) Proceedings of INTERACT , pp. 152-168
    • Cremonesi, P.1    Garzotto, F.2    Negro, S.3    Papadopoulos, A.V.4    Turrin, R.5
  • 41
    • 84873424976 scopus 로고    scopus 로고
    • 'More of an art than a science': Supporting the creation of playlists and mixes
    • Sally Jo Cunningham, David Bainbridge, and Annette Falconer. 2006. 'More of an art than a science': Supporting the creation of playlists and mixes. In Proceedings of ISMIR. 240-245.
    • (2006) Proceedings of ISMIR , pp. 240-245
    • Cunningham, S.J.1    Bainbridge, D.2    Falconer, A.3
  • 42
    • 78650987174 scopus 로고    scopus 로고
    • MuVis: An application for interactive exploration of large music collections
    • Ricardo Dias and Manuel J. Fonseca. 2010. MuVis: An application for interactive exploration of large music collections. In Proceedings of MM. 1043-1046.
    • (2010) Proceedings of MM , pp. 1043-1046
    • Dias, R.1    Fonseca, M.J.2
  • 43
    • 84873419184 scopus 로고    scopus 로고
    • Accessing music collections via representative cluster prototypes in a hierarchical organization scheme
    • Markus Dopler, Markus Schedl, Tim Pohle, and Peter Knees. 2008. Accessing music collections via representative cluster prototypes in a hierarchical organization scheme. In Proceedings of ISMIR. 179-184.
    • (2008) Proceedings of ISMIR , pp. 179-184
    • Dopler, M.1    Schedl, M.2    Pohle, T.3    Knees, P.4
  • 45
    • 0034360411 scopus 로고    scopus 로고
    • Market power in radio markets: An empirical analysis of local and national concentration
    • Robert B. Ekelund, George S. Ford, and Thomas Koutsky. 2000. Market power in radio markets: An empirical analysis of local and national concentration. Journal of Law and Economics 43, 1, 157-184.
    • (2000) Journal of Law and Economics , vol.43 , Issue.1 , pp. 157-184
    • Ekelund, R.B.1    Ford, G.S.2    Koutsky, T.3
  • 47
    • 84873415927 scopus 로고    scopus 로고
    • Social playlists and bottleneck measurements: Exploiting musician social graphs using content-based dissimilarity and pairwise maximum flow values
    • Benjamin Fields, Christophe Rhodes, Michael Casey, and Kurt Jacobson. 2008. Social playlists and bottleneck measurements: Exploiting musician social graphs using content-based dissimilarity and pairwise maximum flow values. In Proceedings of ISMIR. 559-564.
    • (2008) Proceedings of ISMIR , pp. 559-564
    • Fields, B.1    Rhodes, C.2    Casey, M.3    Jacobson, K.4
  • 49
    • 34547522780 scopus 로고    scopus 로고
    • An adaptive distance measure for similarity based playlist generation
    • Don Gartner, Florian Kraft, and Thomas Schaaf. 2007. An adaptive distance measure for similarity based playlist generation. In Proceedings of ICASSP. 229-232.
    • (2007) Proceedings of ICASSP , pp. 229-232
    • Gartner, D.1    Kraft, F.2    Schaaf, T.3
  • 50
    • 84892525734 scopus 로고    scopus 로고
    • Spotify me: Facebook-assisted automatic playlist generation
    • Arthur Germain and Jacob Chakareski. 2013. Spotify me: Facebook-assisted automatic playlist generation. In Proceedings of MMSP. 25-28.
    • (2013) Proceedings of MMSP , pp. 25-28
    • Germain, A.1    Chakareski, J.2
  • 51
    • 85206052667 scopus 로고    scopus 로고
    • Retrieved August 19, 2014, from
    • Dan Grabham. 2011. Last.fm: 'Free On-Demand Not Successful for Us.' TechRadar. Retrieved August 19, 2014, from http://www.techradar.com/us/news/internet/audio/last-fm-free-on-demand-not-successful-for-us-946276.
    • (2011) Last.Fm: 'Free On-Demand Not Successful for Us.
    • Grabham, D.1
  • 52
    • 84873572127 scopus 로고    scopus 로고
    • The ISMIR cloud: A decade of ISMIR conferences at your fingertips
    • Maarten Grachten, Markus Schedl, Tim Pohle, and Gerhard Widmer. 2009. The ISMIR cloud: A decade of ISMIR conferences at your fingertips. In Proceedings of ISMIR. 63-68.
    • (2009) Proceedings of ISMIR , pp. 63-68
    • Grachten, M.1    Schedl, M.2    Pohle, T.3    Widmer, G.4
  • 54
    • 84892467450 scopus 로고    scopus 로고
    • Mixing it up: Recommending collections of items
    • Derek L. Hansen and Jennifer Golbeck. 2009. Mixing it up: Recommending collections of items. In Proceedings of CHI. 1217-1226.
    • (2009) Proceedings of CHI , pp. 1217-1226
    • Hansen, D.L.1    Golbeck, J.2
  • 55
    • 84867392672 scopus 로고    scopus 로고
    • Context-aware music recommendation based on latent topic sequential patterns
    • Negar Hariri, Bamshad Mobasher, and Robin Burke. 2012. Context-aware music recommendation based on latent topic sequential patterns. In Proceedings of RecSys. 131-138.
    • (2012) Proceedings of RecSys , pp. 131-138
    • Hariri, N.1    Mobasher, B.2    Burke, R.3
  • 56
  • 57
    • 84911093517 scopus 로고    scopus 로고
    • Automatic playlist generation from self-organizing music map
    • Pitoyo Hartono and Ryo Yoshitake. 2013. Automatic playlist generation from self-organizing music map. Journal of Signal Processing 17, 1, 11-19.
    • (2013) Journal of Signal Processing , vol.17 , Issue.1 , pp. 11-19
    • Hartono, P.1    Yoshitake, R.2
  • 58
    • 84897638496 scopus 로고    scopus 로고
    • Themillion musical tweets dataset: What can we learn from microblogs
    • David Hauger, Johannes Kepler, Markus Schedl, Andrej Košir, and Marko Tkalcic. 2013. Themillion musical tweets dataset: What can we learn from microblogs. In Proceedings of ISMIR. 189-194.
    • (2013) Proceedings of ISMIR , pp. 189-194
    • Hauger, D.1    Kepler, J.2    Schedl, M.3    Košir, A.4    Tkalcic, M.5
  • 59
    • 84878863526 scopus 로고    scopus 로고
    • Flycasting: Using collaborative filtering to generate a playlist for online radio
    • David B. Hauver and James C. French. 2001. Flycasting: Using collaborative filtering to generate a playlist for online radio. In Proceedings of WEDELMUSIC. 123-130.
    • (2001) Proceedings of WEDELMUSIC , pp. 123-130
    • Hauver, D.B.1    French, J.C.2
  • 60
    • 33746686293 scopus 로고    scopus 로고
    • AudioRadar: A metaphorical visualization for the navigation of large music collections
    • Otmar Hilliges, Phillipp Holzer, Rene Klüber, and Andreas Butz. 2006. AudioRadar: A metaphorical visualization for the navigation of large music collections. In Proceedings of Smart Graphics. 82-92.
    • (2006) Proceedings of Smart Graphics , pp. 82-92
    • Hilliges, O.1    Holzer, P.2    Klüber, R.3    Butz, A.4
  • 62
    • 83755178043 scopus 로고    scopus 로고
    • Constraint-based playlist generation by applying genetic algorithm
    • Jia-Lien Hsu and Shuk-Chun Chung. 2011. Constraint-based playlist generation by applying genetic algorithm. In Proceedings of SMC. 1417-1422.
    • (2011) Proceedings of SMC , pp. 1417-1422
    • Hsu, J.-L.1    Chung, S.-C.2
  • 63
    • 84873588899 scopus 로고    scopus 로고
    • NextOne player: A music recommendation system based on user behavior
    • Yajie Hu and Mitsunori Ogihara. 2011. NextOne player: A music recommendation system based on user behavior. In Proceedings of ISMIR. 103-108.
    • (2011) Proceedings of ISMIR , pp. 103-108
    • Hu, Y.1    Ogihara, M.2
  • 64
    • 84884473556 scopus 로고    scopus 로고
    • What recommenders recommend - An analysis of accuracy, popularity, and sales diversity effects
    • Dietmar Jannach, Lukas Lerche, Fatih Gedikli, and Geoffray Bonnin. 2013. What recommenders recommend - an analysis of accuracy, popularity, and sales diversity effects. In User Modeling, Adaptation, and Personalization. 25-37.
    • (2013) User Modeling, Adaptation, and Personalization , pp. 25-37
    • Jannach, D.1    Lerche, L.2    Gedikli, F.3    Bonnin, G.4
  • 65
    • 84866011204 scopus 로고    scopus 로고
    • Recommender systems in computer science and information systems - A landscape of research
    • Dietmar Jannach, Markus Zanker, Mouzhi Ge, and Marian Gröning. 2012. Recommender systems in computer science and information systems - a landscape of research. In Proceedings of EC-Web. 76-87.
    • (2012) Proceedings of EC-Web , pp. 76-87
    • Jannach, D.1    Zanker, M.2    Ge, M.3    Gröning, M.4
  • 68
    • 84867887152 scopus 로고    scopus 로고
    • Rhythmic walking interactions with auditory feedback: An exploratory study
    • Antti Jylhä, Stefania Serafin, and Cumhur Erkut. 2012. Rhythmic walking interactions with auditory feedback: An exploratory study. In Proceedings of AM. 68-75.
    • (2012) Proceedings of AM , pp. 68-75
    • Jylhä, A.1    Serafin, S.2    Erkut, C.3
  • 69
    • 84873417428 scopus 로고    scopus 로고
    • A survey on music listening and management behaviours
    • Mohsen Kamalzadeh, Dominikus Baur, and Torsten Möller. 2012. A survey on music listening and management behaviours. In Proceedings of ISMIR. 373-378.
    • (2012) Proceedings of ISMIR , pp. 373-378
    • Kamalzadeh, M.1    Baur, D.2    Möller, T.3
  • 70
    • 79960298798 scopus 로고    scopus 로고
    • Location-adapted music recommendation using tags
    • Marius Kaminskas and Francesco Ricci. 2011. Location-adapted music recommendation using tags. In Proceedings of UMAP. 183-194.
    • (2011) Proceedings of UMAP , pp. 183-194
    • Kaminskas, M.1    Ricci, F.2
  • 71
    • 34547484851 scopus 로고    scopus 로고
    • Combining audio-based similarity with Web-based data to accelerate automatic music playlist generation
    • Peter Knees, Tim Pohle, Markus Schedl, and Gerhard Widmer. 2006. Combining audio-based similarity with Web-based data to accelerate automatic music playlist generation. In Proceedings of MIR. 147-154.
    • (2006) Proceedings of MIR , pp. 147-154
    • Knees, P.1    Pohle, T.2    Schedl, M.3    Widmer, G.4
  • 72
    • 84911103658 scopus 로고    scopus 로고
    • I've got 10 million songs in my pocket: Now what?
    • Paul B. Lamere. 2012. I've got 10 million songs in my pocket: Now what? In Proceedings of RecSys. 207-208.
    • (2012) Proceedings of RecSys , pp. 207-208
    • Lamere, P.B.1
  • 73
    • 84876859197 scopus 로고    scopus 로고
    • Evaluation of a cascade hybrid recommendation as a combination of one-class classification and collaborative filtering
    • Aristomenis S. Lampropoulos, Dionysios N. Sotiropoulos, and George A. Tsihrintzis. 2012. Evaluation of a cascade hybrid recommendation as a combination of one-class classification and collaborative filtering. In Proceedings of ICTAI . 674-681.
    • (2012) Proceedings of ICTAI , pp. 674-681
    • Lampropoulos, A.S.1    Sotiropoulos, D.N.2    Tsihrintzis, G.A.3
  • 74
    • 84867180950 scopus 로고    scopus 로고
    • How similar is too similar? Exploring users' perceptions of similarity in playlist evaluation
    • Jin Ha Lee, Bobby Bare, and Gary Meek. 2011. How similar is too similar? Exploring users' perceptions of similarity in playlist evaluation. In Proceedings of ISMIR. 109-114.
    • (2011) Proceedings of ISMIR , pp. 109-114
    • Lee, J.H.1    Bare, B.2    Meek, G.3
  • 75
    • 84863240127 scopus 로고    scopus 로고
    • Mood classfication from musical audio using user group-dependent models
    • Kyogu Lee and Minsu Cho. 2011. Mood classfication from musical audio using user group-dependent models. In Proceedings of ICMLA. 130-135.
    • (2011) Proceedings of ICMLA , pp. 130-135
    • Lee, K.1    Cho, M.2
  • 76
    • 77954523419 scopus 로고    scopus 로고
    • Evaluation of automaticmobile playlist generator
    • Arto Lehtiniemi and Jarno Seppänen. 2007. Evaluation of automaticmobile playlist generator. In Proceedings of MC. 452-459.
    • (2007) Proceedings of MC , pp. 452-459
    • Lehtiniemi, A.1    Seppänen, J.2
  • 78
    • 2942722135 scopus 로고    scopus 로고
    • Content-based playlist generation: Exploratory experiments
    • Beth Logan. 2002. Content-based playlist generation: Exploratory experiments. In Proceedings of ISMIR. 295-296.
    • (2002) Proceedings of ISMIR , pp. 295-296
    • Logan, B.1
  • 79
    • 33846146171 scopus 로고    scopus 로고
    • Music recommendation from song sets
    • Beth Logan. 2004. Music recommendation from song sets. In Proceedings of ISMIR. 425-428.
    • (2004) Proceedings of ISMIR , pp. 425-428
    • Logan, B.1
  • 80
    • 84908291782 scopus 로고    scopus 로고
    • A music similarity function based on signal analysis
    • Beth Logan and Ariel Salomon. 2001. A music similarity function based on signal analysis. In Proceedings of ICME. 190-193.
    • (2001) Proceedings of ICME , pp. 190-193
    • Logan, B.1    Salomon, A.2
  • 81
    • 84867145161 scopus 로고    scopus 로고
    • Steerable playlist generation by learning song similarity from radio station playlists
    • Franc¸ois Maillet, Douglas Eck, Guillaume Desjardins, and Paul Lamere. 2009. Steerable playlist generation by learning song similarity from radio station playlists. In Proceedings of ISMIR. 345-350.
    • (2009) Proceedings of ISMIR , pp. 345-350
    • Maillet, F.1    Eck, D.2    Desjardins, G.3    Lamere, P.4
  • 82
    • 84873415395 scopus 로고    scopus 로고
    • Development of an automatic music selection system based on runner's step frequency
    • Niitsuma Masahiro, Hiroshi Takaesu, Hazuki Demachi, Masaki Oono, and Hiroaki Saito. 2008. Development of an automatic music selection system based on runner's step frequency. In Proceedings of ISMIR. 193-198.
    • (2008) Proceedings of ISMIR , pp. 193-198
    • Masahiro, N.1    Takaesu, H.2    Demachi, H.3    Oono, M.4    Saito, H.5
  • 83
    • 84882530963 scopus 로고    scopus 로고
    • Auditory preferences and aesthetics: Music, voices, and everyday sounds
    • Elsevier
    • Josh McDermott. 2012. Auditory preferences and aesthetics: Music, voices, and everyday sounds. In Neuroscience of Performance and Choice. Elsevier, 227-256.
    • (2012) Neuroscience of Performance and Choice , pp. 227-256
    • McDermott, J.1
  • 86
    • 84873479796 scopus 로고    scopus 로고
    • Hypergraph models of playlist dialects
    • Brian McFee and Gert R. G. Lanckriet. 2012. Hypergraph models of playlist dialects. In Proceedings of ISMIR. 343-348.
    • (2012) Proceedings of ISMIR , pp. 343-348
    • McFee, B.1    Lanckriet, G.R.G.2
  • 87
    • 79959296158 scopus 로고    scopus 로고
    • Ph.D. Dissertation. McGill University, Montreal, Quebec, Canada
    • Cory McKay. 2010. Automatic Music Classification with jMIR. Ph.D. Dissertation. McGill University, Montreal, Quebec, Canada.
    • (2010) Automatic Music Classification with JMIR
    • McKay, C.1
  • 90
    • 84873416522 scopus 로고    scopus 로고
    • Learning to embed songs and tags for playlist prediction
    • Joshua L. Moore, Shuo Chen, Thorsten Joachims, and Douglas Turnbull. 2012. Learning to embed songs and tags for playlist prediction. In Proceedings of ISMIR. 349-354.
    • (2012) Proceedings of ISMIR , pp. 349-354
    • Moore, J.L.1    Chen, S.2    Joachims, T.3    Turnbull, D.4
  • 91
    • 33645685981 scopus 로고    scopus 로고
    • Impact of site characteristics on recommendation models based on association rules and sequential patterns
    • Miki Nakagawa and Bamshad Mobasher. 2003. Impact of site characteristics on recommendation models based on association rules and sequential patterns. In Proceedings of ITWP.
    • (2003) Proceedings of ITWP
    • Nakagawa, M.1    Mobasher, B.2
  • 92
    • 34547271105 scopus 로고    scopus 로고
    • MPTrain: A mobile, music and physiology-based personal trainer
    • Nuria Oliver and Fernando Flores-Mangas. 2006. MPTrain: A mobile, music and physiology-based personal trainer. In Proceedings of MobileHCI. 21-28.
    • (2006) Proceedings of MobileHCI , pp. 21-28
    • Oliver, N.1    Flores-Mangas, F.2
  • 93
    • 85206039390 scopus 로고    scopus 로고
    • PAPA: Physiology and purpose-aware automatic playlist generation
    • Nuria Oliver and Lucas Kreger-Stickles. 2006. PAPA: Physiology and purpose-aware automatic playlist generation. In Proceedings of ISMIR. 393-396.
    • (2006) Proceedings of ISMIR , pp. 393-396
    • Oliver, N.1    Kreger-Stickles, L.2
  • 94
    • 84911114413 scopus 로고    scopus 로고
    • Metadata for music and sounds: The CUIDADO project
    • Franc¸ois Pachet. 2001. Metadata for music and sounds: The CUIDADO project. In Proceedings of CBMI. 411-415.
    • (2001) Proceedings of CBMI , pp. 411-415
    • Pachet, F.1
  • 95
    • 0033890023 scopus 로고    scopus 로고
    • A combinatorial approach to content-based music selection
    • Franc¸ois Pachet, Pierre Roy, and Daniel Cazaly. 2000. A combinatorial approach to content-based music selection. Multimedia 7, 1, 44-51.
    • (2000) Multimedia , vol.7 , Issue.1 , pp. 44-51
    • Pachet, F.1    Roy, P.2    Cazaly, D.3
  • 96
    • 84873533505 scopus 로고    scopus 로고
    • Dynamic playlist generation based on skipping behavior
    • Elias Pampalk, Tim Pohle, and Gerhard Widmer. 2005. Dynamic playlist generation based on skipping behavior. In Proceedings of ISMIR. 634-637.
    • (2005) Proceedings of ISMIR , pp. 634-637
    • Pampalk, E.1    Pohle, T.2    Widmer, G.3
  • 97
    • 2942734838 scopus 로고    scopus 로고
    • PATS: Realization and user evaluation of an automatic playlist generator
    • Steffen Pauws and Berry Eggen. 2002. PATS: Realization and user evaluation of an automatic playlist generator. In Proceedings of ISMIR. 222-231.
    • (2002) Proceedings of ISMIR , pp. 222-231
    • Pauws, S.1    Eggen, B.2
  • 98
    • 84873535158 scopus 로고    scopus 로고
    • User evaluation of a new interactive playlist generation concept
    • Steffen Pauws and Sander van de Wijdeven. 2005. User evaluation of a new interactive playlist generation concept. In Proceedings of ISMIR. 638-643.
    • (2005) Proceedings of ISMIR , pp. 638-643
    • Pauws, S.1    Van De Wijdeven, S.2
  • 99
    • 84873470750 scopus 로고    scopus 로고
    • Fast generation of optimal music playlists using local search
    • Steffen Pauws, Wim Verhaegh, and Mark Vossen. 2006. Fast generation of optimal music playlists using local search. In Proceedings of ISMIR. 138-143.
    • (2006) Proceedings of ISMIR , pp. 138-143
    • Pauws, S.1    Verhaegh, W.2    Vossen, M.3
  • 100
    • 35748977939 scopus 로고    scopus 로고
    • Music playlist generation by adapted simulated annealing
    • Steffen Pauws, Wim Verhaegh, and Mark Vossen. 2008. Music playlist generation by adapted simulated annealing. In formation Sciences 178, 3, 647-662.
    • (2008) Formation Sciences , vol.178 , Issue.3 , pp. 647-662
    • Pauws, S.1    Verhaegh, W.2    Vossen, M.3
  • 101
    • 84870529222 scopus 로고    scopus 로고
    • Perceptual tempo estimation using GMM-regression
    • Geoffroy Peeters and Joachim Flocon-Cholet. 2012. Perceptual tempo estimation using GMM-regression. In Proceedings of MIRUM. 45-50.
    • (2012) Proceedings of MIRUM , pp. 45-50
    • Peeters, G.1    Flocon-Cholet, J.2
  • 102
    • 18444409211 scopus 로고    scopus 로고
    • Learning a Gaussian process prior for automatically generating music playlists
    • John C. Platt, Christopher J. C. Burges, Steven Swenson, Christopher Weare, and Alice Zheng. 2001. Learning a Gaussian process prior for automatically generating music playlists. In Proceedings of NIPS. 1425-1432.
    • (2001) Proceedings of NIPS , pp. 1425-1432
    • Platt, J.C.1    Burges, C.J.C.2    Swenson, S.3    Weare, C.4    Zheng, A.5
  • 103
    • 33947586195 scopus 로고    scopus 로고
    • Reinventing the wheel: A novel approach to music player interfaces
    • Tim Pohle, Peter Knees, Markus Schedl, Elias Pampalk, and Gerhard Widmer. 2007. Reinventing the wheel: A novel approach to music player interfaces. Multimedia 9, 3, 567-575.
    • (2007) Multimedia , vol.9 , Issue.3 , pp. 567-575
    • Pohle, T.1    Knees, P.2    Schedl, M.3    Pampalk, E.4    Widmer, G.5
  • 104
    • 84871996661 scopus 로고    scopus 로고
    • Generating similarity-based playlists using traveling salesman algorithms
    • Tim Pohle, Elias Pampalk, and Gerhard Widmer. 2005. Generating similarity-based playlists using traveling salesman algorithms. In Proceedings of DAFx. 220-225.
    • (2005) Proceedings of DAFx , pp. 220-225
    • Pohle, T.1    Pampalk, E.2    Widmer, G.3
  • 105
    • 65449170236 scopus 로고    scopus 로고
    • Inferring similarity between music objects with application to playlist generation
    • Robert Ragno, Chris J. C. Burges, and Cormac Herley. 2005. Inferring similarity between music objects with application to playlist generation. In eedings of MIR. 73-80.
    • (2005) Eedings of MIR , pp. 73-80
    • Ragno, R.1    Burges, C.J.C.2    Herley, C.3
  • 106
    • 34547336525 scopus 로고    scopus 로고
    • Lifetrak: Music in tune with your life
    • Sasank Reddy and Jeff Mascia. 2006. Lifetrak: Music in tune with your life. In Proceedings of HCM . 25-34.
    • (2006) Proceedings of HCM , pp. 25-34
    • Reddy, S.1    Mascia, J.2
  • 108
    • 54049156937 scopus 로고    scopus 로고
    • Interacting with large music collections: Towards the use of environmental metadata
    • Gordon Reynolds, Dan Barry, Ted Burke, and Eugene Coyle. 2008. Interacting with large music collections: Towards the use of environmental metadata. In Proceedings of ICME. 989-992.
    • (2008) Proceedings of ICME , pp. 989-992
    • Reynolds, G.1    Barry, D.2    Burke, T.3    Coyle, E.4
  • 109
    • 33646907991 scopus 로고    scopus 로고
    • Two decades of statistical language modeling: Where do we go from here?
    • Ronald Rosenfeld. 2000. Two decades of statistical language modeling: Where do we go from here? Proceedings of the IEEE 88, 8, 1270-1278.
    • (2000) Proceedings of the IEEE , vol.88 , Issue.8 , pp. 1270-1278
    • Rosenfeld, R.1
  • 110
    • 84873424941 scopus 로고    scopus 로고
    • Good vibrations: Music discovery through personal musical concepts
    • Vegard Sandvold, Thomas Aussenac, Oscar Celma, and Perfecto Herrera. 2006. Good vibrations: Music discovery through personal musical concepts. In Proceedings of ISMIR. 322-323.
    • (2006) Proceedings of ISMIR , pp. 322-323
    • Sandvold, V.1    Aussenac, T.2    Celma, O.3    Herrera, P.4
  • 111
    • 84905159362 scopus 로고    scopus 로고
    • Modeling and predicting song adjacencies in commercial albums
    • Andy M. Sarroff and Michael Casey. 2012. Modeling and predicting song adjacencies in commercial albums. In Proceedings of SMC.
    • (2012) Proceedings of SMC
    • Sarroff, A.M.1    Casey, M.2
  • 112
    • 84892564039 scopus 로고    scopus 로고
    • High performance hardware architectures for automated music classification
    • Ingo Schmädecke and Holger Blume. 2013. High performance hardware architectures for automated music classification. In Algorithms from and for Nature and Life. 539-547.
    • (2013) Algorithms from and for Nature and Life , pp. 539-547
    • Schmädecke, I.1    Blume, H.2
  • 113
    • 34547478307 scopus 로고    scopus 로고
    • Measuring playlist diversity for recommendation systems
    • Malcolm Slaney and William White. 2006. Measuring playlist diversity for recommendation systems. In Proceedings of AMCMM . 77-82.
    • (2006) Proceedings of AMCMM , pp. 77-82
    • Slaney, M.1    White, W.2
  • 114
    • 84873573578 scopus 로고    scopus 로고
    • Similarity based on rating data
    • Malcolm Slaney and William White. 2007. Similarity based on rating data. In Proceedings of ISMIR. 479-484.
    • (2007) Proceedings of ISMIR , pp. 479-484
    • Slaney, M.1    White, W.2
  • 116
    • 84873529473 scopus 로고    scopus 로고
    • Visual playlist generation on the artist map
    • Rob Van Gulik and Fabio Vignoli. 2005. Visual playlist generation on the artist map. In Proceedings of ISMIR. 520-523.
    • (2005) Proceedings of ISMIR , pp. 520-523
    • Van Gulik, R.1    Vignoli, F.2
  • 117
    • 84860399467 scopus 로고    scopus 로고
    • Multi-objective feature selection in music genre and style recognition tasks
    • Igor Vatolkin, Mike Preuß, and Günter Rudolph. 2011. Multi-objective feature selection in music genre and style recognition tasks. In Proceedings of GECCO. 411-418.
    • (2011) Proceedings of GECCO , pp. 411-418
    • Vatolkin, I.1    Preuß, M.2    Rudolph, G.3
  • 118
    • 84873536012 scopus 로고    scopus 로고
    • A music retrieval system based on user driven similarity and its evaluation
    • Fabio Vignoli and Steffen Pauws. 2005. A music retrieval system based on user driven similarity and its evaluation. In Proceedings of ISMIR. 272-279.
    • (2005) Proceedings of ISMIR , pp. 272-279
    • Vignoli, F.1    Pauws, S.2
  • 120
    • 0002918344 scopus 로고    scopus 로고
    • Beyond accuracy: What data quality means to data consumers
    • Richard Y. Wang and Diane M. Strong. 1996. Beyond accuracy: What data quality means to data consumers. Journal of Management Information Systems 12, 4, 5-33.
    • (1996) Journal of Management Information Systems , vol.12 , Issue.4 , pp. 5-33
    • Wang, R.Y.1    Strong, D.M.2
  • 121
    • 20844458491 scopus 로고    scopus 로고
    • Mining with rarity: A unifying framework
    • Gary M. Weiss. 2004. Mining with rarity: A unifying framework. SIGKDD Explorations Newsletter 6, 1, 7-19.
    • (2004) SIGKDD Explorations Newsletter , vol.6 , Issue.1 , pp. 7-19
    • Weiss, G.M.1
  • 122
    • 0030242072 scopus 로고    scopus 로고
    • Content-based classification, search, and retrieval of audio
    • Erling Wold, Thom Blum, Douglas Keislar, and James Wheaten. 1996. Content-based classification, search, and retrieval of audio. Multimedia 3, 3, 27-36.
    • (1996) Multimedia , vol.3 , Issue.3 , pp. 27-36
    • Wold, E.1    Blum, T.2    Keislar, D.3    Wheaten, J.4
  • 123
    • 70349194532 scopus 로고    scopus 로고
    • Learning a music similarity measure on automatic annotations with application to playlist generation
    • Linxing Xiao, Lie Lu, Frank Seide, and Jie Zhou. 2009. Learning a music similarity measure on automatic annotations with application to playlist generation. In Proceedings of ICASSP. 1885-1888.
    • (2009) Proceedings of ICASSP , pp. 1885-1888
    • Xiao, L.1    Lu, L.2    Seide, F.3    Zhou, J.4
  • 124
    • 84911114412 scopus 로고    scopus 로고
    • Retrieved August 19, 2014, from
    • David Zax. 2011. The Echo Nestmakes Pandora look like a transistor radio. Fast Company. Retrieved August 19, 2014, from http://www.fastcompany.com/1734773/echo-nest-makes-pandora-look-transistor-radio.
    • (2011) The Echo Nestmakes Pandora Look Like a Transistor Radio
    • Zax, D.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.