-
1
-
-
0027621699
-
Mining association rules between sets of items in large databases
-
R. Agrawal, T. Imielinski, and A. Swami. Mining Association Rules between Sets of Items in Large Databases. In SIGMOD 1993, pages 207–216, 1993.
-
(1993)
SIGMOD 1993
, pp. 207-216
-
-
Agrawal, R.1
Imielinski, T.2
Swami, A.3
-
3
-
-
84873683421
-
Smarter than genius? human evaluation of music recommender systems
-
L. Barrington, R. Oda, and G. Lanckriet. Smarter than Genius? Human Evaluation of Music Recommender Systems. In Proc. ISMIR 2009, pages 357–362, 2009.
-
(2009)
Proc. ISMIR 2009
, pp. 357-362
-
-
Barrington, L.1
Oda, R.2
Lanckriet, G.3
-
4
-
-
77951107795
-
Rush: Repeated recommendations on mobile devices
-
Dominikus Baur, Sebastian Boring, and Andreas Butz. Rush: Repeated Recommendations on Mobile Devices. In Proc. IUI 2010, pages 91–100, 2010.
-
(2010)
Proc. IUI 2010
, pp. 91-100
-
-
Baur, D.1
Boring, S.2
Butz, A.3
-
6
-
-
84866017612
-
Playlist prediction via metric embedding
-
S. Chen, J.L. Moore, D. Turnbull, and T. Joachims. Playlist Prediction via Metric Embedding. In Proc. KDD 2012, pages 714–722, 2012.
-
(2012)
Proc. KDD 2012
, pp. 714-722
-
-
Chen, S.1
Moore, J.L.2
Turnbull, D.3
Joachims, T.4
-
7
-
-
78649914423
-
Performance of recommender algorithms on top-n recommendation tasks
-
P. Cremonesi, Y. Koren, and R. Turrin. Performance of recommender algorithms on top-n recommendation tasks. In ACM RecSys 2010, pages 39–46, 2010.
-
(2010)
ACM RecSys 2010
, pp. 39-46
-
-
Cremonesi, P.1
Koren, Y.2
Turrin, R.3
-
8
-
-
84873424976
-
More of an art than a science’: Supporting the creation of playlists and mixes
-
S. Cunningham, D. Bainbridge, and A. Falconer. ‘More of an Art than a Science’: Supporting the Creation of Playlists and Mixes. In Proc. ISMIR 2006, pages 240–245, 2006.
-
(2006)
Proc. ISMIR 2006
, pp. 240-245
-
-
Cunningham, S.1
Bainbridge, D.2
Falconer, A.3
-
9
-
-
84555179343
-
-
PhD thesis, Goldsmiths, University of London, London, UK, April
-
B. Fields. ”Contextualize Your Listening: The Playlist as Recommendation Engine”. PhD thesis, Goldsmiths, University of London, London, UK, April 2011.
-
(2011)
Contextualize Your Listening: The Playlist as Recommendation Engine
-
-
Fields, B.1
-
10
-
-
84873443934
-
Playlist generation using start and end songs
-
A. Flexer, D. Schnitzer, M. Gasser, and G. Widmer. Playlist Generation Using Start and End Songs. In ISMIR 2008, pages 173–178, 2008.
-
(2008)
ISMIR 2008
, pp. 173-178
-
-
Flexer, A.1
Schnitzer, D.2
Gasser, M.3
Widmer, G.4
-
11
-
-
84867392672
-
Context - Aware music recommendation based on latent topic sequential patterns
-
N. Hariri, B. Mobasher, and R. Burke. Context-Aware Music Recommendation Based on Latent Topic Sequential Patterns. In Proc. ACM RecSys 2012, pages 131–138, 2012.
-
(2012)
Proc. ACM RecSys 2012
, pp. 131-138
-
-
Hariri, N.1
Mobasher, B.2
Burke, R.3
-
12
-
-
84898864406
-
Music recommendation and discovery remastered
-
Online at
-
P. Lamere and Ò. Celma. Music Recommendation and Discovery Remastered, Tutorial at ACM RecSys 2011. Online at http://www.slideshare.net/slideshow/embed_code/9860137, 2011.
-
(2011)
Tutorial at ACM RecSys 2011
-
-
Lamere, P.1
Celma, Ò.2
-
15
-
-
78650134987
-
BPR: Bayesian personalized ranking from implicit feedback
-
S. Rendle, C. Freudenthaler, Z. Gantner, and L. Schmidt-Thieme. BPR: Bayesian Personalized Ranking from Implicit Feedback. In Proc. UAI, pages 452–461, 2009.
-
(2009)
Proc. UAI
, pp. 452-461
-
-
Rendle, S.1
Freudenthaler, C.2
Gantner, Z.3
Schmidt-Thieme, L.4
|