-
1
-
-
34147215441
-
Imaging prostate cancer: A multidisciplinary perspective
-
Hricak H, Choyke PL, Eberhardt SC, Leibel SA, Scardino PT. Imaging prostate cancer: a multidisciplinary perspective. Radiology 2007;243:28-53.
-
(2007)
Radiology
, vol.243
, pp. 28-53
-
-
Hricak, H.1
Choyke, P.L.2
Eberhardt, S.C.3
Leibel, S.A.4
Scardino, P.T.5
-
2
-
-
0141629547
-
Transition zone prostate cancer: Metabolic characteristics at 1H MR spectroscopic imaging-initial results
-
Zakian KL, Eberhardt S, Hricak H, et al. Transition zone prostate cancer: metabolic characteristics at 1H MR spectroscopic imaging-initial results. Radiology 2003;229:241-247.
-
(2003)
Radiology
, vol.229
, pp. 241-247
-
-
Zakian, K.L.1
Eberhardt, S.2
Hricak, H.3
-
3
-
-
76349100719
-
A qualitative approach to combined magnetic resonance imaging and spectroscopy in the diagnosis of prostate cancer
-
Villeirs G, Oosterlinck W, Vanherreweghe E, De Meerleer G. A qualitative approach to combined magnetic resonance imaging and spectroscopy in the diagnosis of prostate cancer. Eur J Radiol 2010;73:352-356.
-
(2010)
Eur J Radiol
, vol.73
, pp. 352-356
-
-
Villeirs, G.1
Oosterlinck, W.2
Vanherreweghe, E.3
De Meerleer, G.4
-
4
-
-
13844296966
-
Correlation of proton MR spectroscopic imaging with gleason score based on step-section pathologic analysis after radical prostatectomy
-
Zakian KL, Sircar K, Hricak H, et al. Correlation of proton MR spectroscopic imaging with gleason score based on step-section pathologic analysis after radical prostatectomy. Radiology 2005;234:804-814.
-
(2005)
Radiology
, vol.234
, pp. 804-814
-
-
Zakian, K.L.1
Sircar, K.2
Hricak, H.3
-
5
-
-
0030781438
-
Pattern recognition approaches in biomedical and clinical magnetic resonance spectroscopy: A review
-
El-Deredy W. Pattern recognition approaches in biomedical and clinical magnetic resonance spectroscopy: a review. NMR Biomed 1997;10:99-124.
-
(1997)
NMR Biomed
, vol.10
, pp. 99-124
-
-
El-Deredy, W.1
-
6
-
-
0031904449
-
From magnetic resonance spectroscopy to classification of tumors. A review of pattern recognition methods
-
Hagberg G. From magnetic resonance spectroscopy to classification of tumors. A review of pattern recognition methods. NMR Biomed 1998;11:148-156.
-
(1998)
NMR Biomed
, vol.11
, pp. 148-156
-
-
Hagberg, G.1
-
9
-
-
0032997125
-
Applications of neural network analyses to in vivo 1H magnetic resonance spectroscopy of epilepsy patients
-
Bakken IJ, Axelson D, Kvistad KA, et al. Applications of neural network analyses to in vivo 1H magnetic resonance spectroscopy of epilepsy patients. Epilepsy Res 1999;35:245-252.
-
(1999)
Epilepsy Res
, vol.35
, pp. 245-252
-
-
Bakken, I.J.1
Axelson, D.2
Kvistad, K.A.3
-
10
-
-
0036292373
-
Applications of neural network analyses to in vivo 1H magnetic resonance spectroscopy of Parkinson disease patients
-
Axelson D, Bakken IJ, Susann Gribbestad I, et al. Applications of neural network analyses to in vivo 1H magnetic resonance spectroscopy of Parkinson disease patients. J Magn Reson Imaging 2002;16:13-20.
-
(2002)
J Magn Reson Imaging
, vol.16
, pp. 13-20
-
-
Axelson, D.1
Bakken, I.J.2
Susann Gribbestad, I.3
-
11
-
-
0032977622
-
Diagnostic assessment of brain tumours and non-neoplastic brain disorders in vivo using proton nuclear magnetic resonance spectroscopy and artificial neural networks
-
Poptani H, Kaartinen J, Gupta RK, Niemitz M, Hiltunen Y, Kauppinen RA. Diagnostic assessment of brain tumours and non-neoplastic brain disorders in vivo using proton nuclear magnetic resonance spectroscopy and artificial neural networks. J Cancer Res Clin Oncol 1999;125:343-349.
-
(1999)
J Cancer Res Clin Oncol
, vol.125
, pp. 343-349
-
-
Poptani, H.1
Kaartinen, J.2
Gupta, R.K.3
Niemitz, M.4
Hiltunen, Y.5
Kauppinen, R.A.6
-
12
-
-
35349029795
-
Detection of prostate cancer with MR spectroscopic imaging: An expanded paradigm incorporating polyamines
-
Shukla-Dave A, Hricak H, Moskowitz C, et al. Detection of prostate cancer with MR spectroscopic imaging: an expanded paradigm incorporating polyamines. Radiology 2007;245:499-506.
-
(2007)
Radiology
, vol.245
, pp. 499-506
-
-
Shukla-Dave, A.1
Hricak, H.2
Moskowitz, C.3
-
13
-
-
0036091951
-
Artificial neural networks for diagnosis and prognosis in prostate cancer
-
Schwarzer G, Schumacher M. Artificial neural networks for diagnosis and prognosis in prostate cancer. Semin Urol Oncol 2002;20:89-95.
-
(2002)
Semin Urol Oncol
, vol.20
, pp. 89-95
-
-
Schwarzer, G.1
Schumacher, M.2
-
15
-
-
0023710206
-
Comparing the areas under two or more correlated receiver operating characteristic curves: A nonparametric approach
-
DeLong ER, DeLong DM, Clarke-Pearson DL. Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics 1988;44:837-845.
-
(1988)
Biometrics
, vol.44
, pp. 837-845
-
-
DeLong, E.R.1
DeLong, D.M.2
Clarke-Pearson, D.L.3
-
16
-
-
46749086602
-
Introduction to post-processing techniques
-
Jiru F. Introduction to post-processing techniques. Eur J Radiol 2008;67:202-217.
-
(2008)
Eur J Radiol
, vol.67
, pp. 202-217
-
-
Jiru, F.1
-
17
-
-
2442639085
-
Chronic prostatitis: MR imaging and 1H MR spectroscopic imaging findings-initial observations
-
Shukla-Dave A, Hricak H, Eberhardt SC, et al. Chronic prostatitis: MR imaging and 1H MR spectroscopic imaging findings-initial observations. Radiology 2004;231:717-724.
-
(2004)
Radiology
, vol.231
, pp. 717-724
-
-
Shukla-Dave, A.1
Hricak, H.2
Eberhardt, S.C.3
-
18
-
-
77953264918
-
Prostate MRI and 3D MR spectroscopy: How we do it
-
Verma S, Rajesh A, Ftterer J, et al. Prostate MRI and 3D MR spectroscopy: how we do it. AJR Am J Roentgenol 2010;194:1414-1426.
-
(2010)
AJR Am J Roentgenol
, vol.194
, pp. 1414-1426
-
-
Verma, S.1
Rajesh, A.2
Ftterer, J.3
-
19
-
-
77953007681
-
Metabolomic imaging for human prostate cancer detection
-
Wu C-L, Jordan K, Ratai E, et al. Metabolomic imaging for human prostate cancer detection. Sci Transl Med 2010;2:16ra18-16ra18.
-
(2010)
Sci Transl Med
, vol.2
, pp. 16ra18-16ra18
-
-
Wu, C.-L.1
Jordan, K.2
Ratai, E.3
-
20
-
-
54949137302
-
1H magnetic resonance spectroscopy of prostate cancer: Biomarkers for tumor characterization
-
Zakian K, Shukla-Dave A, Ackerstaff E, Hricak H, Koutcher J. 1H magnetic resonance spectroscopy of prostate cancer: biomarkers for tumor characterization. Cancer Biomarkers 2008;4:263-276.
-
(2008)
Cancer Biomarkers
, vol.4
, pp. 263-276
-
-
Zakian, K.1
Shukla-Dave, A.2
Ackerstaff, E.3
Hricak, H.4
Koutcher, J.5
-
21
-
-
33746901239
-
The use of artificial neural networks in decision support in cancer: A systematic review
-
Lisboa P, Taktak AFG. The use of artificial neural networks in decision support in cancer: a systematic review. Neural Netw 2006;19:408-115.
-
(2006)
Neural Netw
, vol.19
, pp. 408-115
-
-
Lisboa, P.1
Taktak, A.F.G.2
-
22
-
-
0037083655
-
Novel artificial neural network for early detection of prostate cancer
-
Djavan B, Remzi M, Zlotta A, Seitz C, Snow P, Marberger M. Novel artificial neural network for early detection of prostate cancer. J Clin Oncol 2002;20:921-929.
-
(2002)
J Clin Oncol
, vol.20
, pp. 921-929
-
-
Djavan, B.1
Remzi, M.2
Zlotta, A.3
Seitz, C.4
Snow, P.5
Marberger, M.6
-
23
-
-
50249187241
-
Critical assessment of tools to predict clinically insignificant prostate cancer at radical prostatectomy in contemporary men
-
Chun FK, Haese A, Ahyai SA, et al. Critical assessment of tools to predict clinically insignificant prostate cancer at radical prostatectomy in contemporary men. Cancer 2008;113:701-709.
-
(2008)
Cancer
, vol.113
, pp. 701-709
-
-
Chun, F.K.1
Haese, A.2
Ahyai, S.A.3
-
24
-
-
74049098329
-
Internal validation of an artificial neural network for prostate biopsy outcome
-
Stephan C, Cammann H, Bender M, et al. Internal validation of an artificial neural network for prostate biopsy outcome. Int J Urol 2010;17:62-68.
-
(2010)
Int J Urol
, vol.17
, pp. 62-68
-
-
Stephan, C.1
Cammann, H.2
Bender, M.3
-
25
-
-
47249157999
-
Development, validation, and head-to-head comparison of logistic regression-based nomograms and artificial neural network models predicting prostate cancer on initial extended biopsy
-
Kawakami S, Numao N, Okubo Y, et al. Development, validation, and head-to-head comparison of logistic regression-based nomograms and artificial neural network models predicting prostate cancer on initial extended biopsy. Eur Urol 2008;54:601-611.
-
(2008)
Eur Urol
, vol.54
, pp. 601-611
-
-
Kawakami, S.1
Numao, N.2
Okubo, Y.3
-
26
-
-
77952093742
-
Image-based clinical decision support for transrectal ultrasound in the diagnosis of prostate cancer: Comparison of multiple logistic regression, artificial neural network, and support vector machine
-
Lee HJ, Hwang SI, Han SM, et al. Image-based clinical decision support for transrectal ultrasound in the diagnosis of prostate cancer: comparison of multiple logistic regression, artificial neural network, and support vector machine. Eur Radiol 2010;20:1476-1484.
-
(2010)
Eur Radiol
, vol.20
, pp. 1476-1484
-
-
Lee, H.J.1
Hwang, S.I.2
Han, S.M.3
-
27
-
-
70349515350
-
The value of an artificial neural network in the decisionmaking for prostate biopsies
-
Meijer RP, Gemen EF, van Onna IE, van der Linden JC, Beerlage HP, Kusters GC. The value of an artificial neural network in the decisionmaking for prostate biopsies. World J Urol 2009;27:593-598.
-
(2009)
World J Urol
, vol.27
, pp. 593-598
-
-
Meijer, R.P.1
Gemen, E.F.2
Van Onna, I.E.3
Van Der Linden, J.C.4
Beerlage, H.P.5
Kusters, G.C.6
-
28
-
-
84857647678
-
Outcome prediction for prostate cancer detection rate with artificial neural network (ANN) in daily routine
-
Ecke TH, Bartel P, Hallmann S, et al. Outcome prediction for prostate cancer detection rate with artificial neural network (ANN) in daily routine. Urol Oncol 2012;30:139-144.
-
(2012)
Urol Oncol
, vol.30
, pp. 139-144
-
-
Ecke, T.H.1
Bartel, P.2
Hallmann, S.3
-
29
-
-
79953815257
-
Predicting prostate biopsy outcome: Artificial neural networks and polychotomous regression are equivalent models
-
Lawrentschuk N, Lockwood G, Davies P, et al. Predicting prostate biopsy outcome: artificial neural networks and polychotomous regression are equivalent models. Int Urol Nephrol 2011;43:23-30.
-
(2011)
Int Urol Nephrol
, vol.43
, pp. 23-30
-
-
Lawrentschuk, N.1
Lockwood, G.2
Davies, P.3
-
30
-
-
18244432236
-
Predicting the outcome of prostate biopsy in screen-positive men by a multilayer perceptron network
-
Finne P, Finne R, Auvinen A, et al. Predicting the outcome of prostate biopsy in screen-positive men by a multilayer perceptron network. Urology 2000;56:418-422.
-
(2000)
Urology
, vol.56
, pp. 418-422
-
-
Finne, P.1
Finne, R.2
Auvinen, A.3
-
31
-
-
0036844831
-
Predicting the outcome of prostate biopsy in a racially diverse population: A prospective study
-
Porter CR, O'Donnell C, Crawford ED, et al. Predicting the outcome of prostate biopsy in a racially diverse population: a prospective study. Urology 2002;60:831-835.
-
(2002)
Urology
, vol.60
, pp. 831-835
-
-
Porter, C.R.1
O'Donnell, C.2
Crawford, E.D.3
-
32
-
-
0042734859
-
An artificial neural network to predict the outcome of repeat prostate biopsies
-
Remzi M, Anagnostou T, Ravery V, et al. An artificial neural network to predict the outcome of repeat prostate biopsies. Urology 2003;62:456-460.
-
(2003)
Urology
, vol.62
, pp. 456-460
-
-
Remzi, M.1
Anagnostou, T.2
Ravery, V.3
-
33
-
-
1542673203
-
Combining artificial neural networks and transrectal ultrasound in the diagnosis of prostate cancer
-
discussion 1399, 1403-1396
-
Porter CR, Crawford ED. Combining artificial neural networks and transrectal ultrasound in the diagnosis of prostate cancer. Oncology (Williston Park) 2003;17:1395-1399; discussion 1399, 1403-1396.
-
(2003)
Oncology (Williston Park)
, vol.17
, pp. 1395-1399
-
-
Porter, C.R.1
Crawford, E.D.2
-
34
-
-
84885369708
-
Simultaneous segmentation of prostatic zones using active appearance models with multiple coupled levelsets
-
Toth R, Ribault J, Gentile J, Sperling D, Madabhushi A. Simultaneous segmentation of prostatic zones using active appearance models with multiple coupled levelsets. Comput Vision Image Understand 2013;117:1051-1060.
-
(2013)
Comput Vision Image Understand
, vol.117
, pp. 1051-1060
-
-
Toth, R.1
Ribault, J.2
Gentile, J.3
Sperling, D.4
Madabhushi, A.5
-
35
-
-
84883872846
-
Multi-kernel graph embedding for detection, Gleason grading of prostate cancer via MRI/MRS
-
Tiwari P, Kurhanewicz J, Madabhushi A. Multi-kernel graph embedding for detection, Gleason grading of prostate cancer via MRI/MRS. Med Image Anal 2013;17:219-235.
-
(2013)
Med Image Anal
, vol.17
, pp. 219-235
-
-
Tiwari, P.1
Kurhanewicz, J.2
Madabhushi, A.3
-
36
-
-
84862736916
-
Central gland and peripheral zone prostate tumors have significantly different quantitative imaging signatures on 3 Tesla endorectal, in vivo T2-weighted MR imagery
-
Viswanath SE, Bloch NB, Chappelow JC, et al. Central gland and peripheral zone prostate tumors have significantly different quantitative imaging signatures on 3 Tesla endorectal, in vivo T2-weighted MR imagery. J Magn Reson Imaging 2012;36:213-224.
-
(2012)
J Magn Reson Imaging
, vol.36
, pp. 213-224
-
-
Viswanath, S.E.1
Bloch, N.B.2
Chappelow, J.C.3
-
37
-
-
75149141063
-
Critical review of prostate cancer predictive tools
-
Shariat S, Kattan M, Vickers A, Karakiewicz P, Scardino P. Critical review of prostate cancer predictive tools. Future Oncol 2009;5:1555-1584.
-
(2009)
Future Oncol
, vol.5
, pp. 1555-1584
-
-
Shariat, S.1
Kattan, M.2
Vickers, A.3
Karakiewicz, P.4
Scardino, P.5
-
38
-
-
77149152172
-
The effect of experimental conditions on the detection of spermine in cell extracts and tissues
-
Spencer NG, Eykyn TR, deSouza NM, Payne GS. The effect of experimental conditions on the detection of spermine in cell extracts and tissues. NMR Biomed 2010;23:163-169.
-
(2010)
NMR Biomed
, vol.23
, pp. 163-169
-
-
Spencer, N.G.1
Eykyn, T.R.2
DeSouza, N.M.3
Payne, G.S.4
|