메뉴 건너뛰기




Volumn 40, Issue 6, 2014, Pages 1414-1421

Anatomic segmentation improves prostate cancer detection with artificial neural networks analysis of 1H magnetic resonance spectroscopic imaging

Author keywords

Computer aided diagnosis; Magnetic resonance spectroscopic imaging; Neural networks; Pattern recognition; Prostate cancer

Indexed keywords

ADULT; AGED; ARTICLE; ARTIFICIAL NEURAL NETWORK; AUTOANALYSIS; CANCER DIAGNOSIS; CANCER PATIENT; CANCER SURGERY; CLINICAL ARTICLE; FEASIBILITY STUDY; HISTOPATHOLOGY; HUMAN; HUMAN TISSUE; MALE; NUCLEAR MAGNETIC RESONANCE SCANNER; PROSTATE CANCER; PROSTATECTOMY; PROTON NUCLEAR MAGNETIC RESONANCE; RETROSPECTIVE STUDY; ALGORITHM; AUTOMATED PATTERN RECOGNITION; CHEMISTRY; EVALUATION STUDY; IMAGE ENHANCEMENT; MIDDLE AGED; NUCLEAR MAGNETIC RESONANCE IMAGING; PROCEDURES; PROSTATIC NEOPLASMS; REPRODUCIBILITY; SENSITIVITY AND SPECIFICITY;

EID: 84909999260     PISSN: 10531807     EISSN: 15222586     Source Type: Journal    
DOI: 10.1002/jmri.24487     Document Type: Article
Times cited : (34)

References (38)
  • 2
    • 0141629547 scopus 로고    scopus 로고
    • Transition zone prostate cancer: Metabolic characteristics at 1H MR spectroscopic imaging-initial results
    • Zakian KL, Eberhardt S, Hricak H, et al. Transition zone prostate cancer: metabolic characteristics at 1H MR spectroscopic imaging-initial results. Radiology 2003;229:241-247.
    • (2003) Radiology , vol.229 , pp. 241-247
    • Zakian, K.L.1    Eberhardt, S.2    Hricak, H.3
  • 3
    • 76349100719 scopus 로고    scopus 로고
    • A qualitative approach to combined magnetic resonance imaging and spectroscopy in the diagnosis of prostate cancer
    • Villeirs G, Oosterlinck W, Vanherreweghe E, De Meerleer G. A qualitative approach to combined magnetic resonance imaging and spectroscopy in the diagnosis of prostate cancer. Eur J Radiol 2010;73:352-356.
    • (2010) Eur J Radiol , vol.73 , pp. 352-356
    • Villeirs, G.1    Oosterlinck, W.2    Vanherreweghe, E.3    De Meerleer, G.4
  • 4
    • 13844296966 scopus 로고    scopus 로고
    • Correlation of proton MR spectroscopic imaging with gleason score based on step-section pathologic analysis after radical prostatectomy
    • Zakian KL, Sircar K, Hricak H, et al. Correlation of proton MR spectroscopic imaging with gleason score based on step-section pathologic analysis after radical prostatectomy. Radiology 2005;234:804-814.
    • (2005) Radiology , vol.234 , pp. 804-814
    • Zakian, K.L.1    Sircar, K.2    Hricak, H.3
  • 5
    • 0030781438 scopus 로고    scopus 로고
    • Pattern recognition approaches in biomedical and clinical magnetic resonance spectroscopy: A review
    • El-Deredy W. Pattern recognition approaches in biomedical and clinical magnetic resonance spectroscopy: a review. NMR Biomed 1997;10:99-124.
    • (1997) NMR Biomed , vol.10 , pp. 99-124
    • El-Deredy, W.1
  • 6
    • 0031904449 scopus 로고    scopus 로고
    • From magnetic resonance spectroscopy to classification of tumors. A review of pattern recognition methods
    • Hagberg G. From magnetic resonance spectroscopy to classification of tumors. A review of pattern recognition methods. NMR Biomed 1998;11:148-156.
    • (1998) NMR Biomed , vol.11 , pp. 148-156
    • Hagberg, G.1
  • 9
    • 0032997125 scopus 로고    scopus 로고
    • Applications of neural network analyses to in vivo 1H magnetic resonance spectroscopy of epilepsy patients
    • Bakken IJ, Axelson D, Kvistad KA, et al. Applications of neural network analyses to in vivo 1H magnetic resonance spectroscopy of epilepsy patients. Epilepsy Res 1999;35:245-252.
    • (1999) Epilepsy Res , vol.35 , pp. 245-252
    • Bakken, I.J.1    Axelson, D.2    Kvistad, K.A.3
  • 10
    • 0036292373 scopus 로고    scopus 로고
    • Applications of neural network analyses to in vivo 1H magnetic resonance spectroscopy of Parkinson disease patients
    • Axelson D, Bakken IJ, Susann Gribbestad I, et al. Applications of neural network analyses to in vivo 1H magnetic resonance spectroscopy of Parkinson disease patients. J Magn Reson Imaging 2002;16:13-20.
    • (2002) J Magn Reson Imaging , vol.16 , pp. 13-20
    • Axelson, D.1    Bakken, I.J.2    Susann Gribbestad, I.3
  • 11
    • 0032977622 scopus 로고    scopus 로고
    • Diagnostic assessment of brain tumours and non-neoplastic brain disorders in vivo using proton nuclear magnetic resonance spectroscopy and artificial neural networks
    • Poptani H, Kaartinen J, Gupta RK, Niemitz M, Hiltunen Y, Kauppinen RA. Diagnostic assessment of brain tumours and non-neoplastic brain disorders in vivo using proton nuclear magnetic resonance spectroscopy and artificial neural networks. J Cancer Res Clin Oncol 1999;125:343-349.
    • (1999) J Cancer Res Clin Oncol , vol.125 , pp. 343-349
    • Poptani, H.1    Kaartinen, J.2    Gupta, R.K.3    Niemitz, M.4    Hiltunen, Y.5    Kauppinen, R.A.6
  • 12
    • 35349029795 scopus 로고    scopus 로고
    • Detection of prostate cancer with MR spectroscopic imaging: An expanded paradigm incorporating polyamines
    • Shukla-Dave A, Hricak H, Moskowitz C, et al. Detection of prostate cancer with MR spectroscopic imaging: an expanded paradigm incorporating polyamines. Radiology 2007;245:499-506.
    • (2007) Radiology , vol.245 , pp. 499-506
    • Shukla-Dave, A.1    Hricak, H.2    Moskowitz, C.3
  • 13
    • 0036091951 scopus 로고    scopus 로고
    • Artificial neural networks for diagnosis and prognosis in prostate cancer
    • Schwarzer G, Schumacher M. Artificial neural networks for diagnosis and prognosis in prostate cancer. Semin Urol Oncol 2002;20:89-95.
    • (2002) Semin Urol Oncol , vol.20 , pp. 89-95
    • Schwarzer, G.1    Schumacher, M.2
  • 15
    • 0023710206 scopus 로고
    • Comparing the areas under two or more correlated receiver operating characteristic curves: A nonparametric approach
    • DeLong ER, DeLong DM, Clarke-Pearson DL. Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics 1988;44:837-845.
    • (1988) Biometrics , vol.44 , pp. 837-845
    • DeLong, E.R.1    DeLong, D.M.2    Clarke-Pearson, D.L.3
  • 16
    • 46749086602 scopus 로고    scopus 로고
    • Introduction to post-processing techniques
    • Jiru F. Introduction to post-processing techniques. Eur J Radiol 2008;67:202-217.
    • (2008) Eur J Radiol , vol.67 , pp. 202-217
    • Jiru, F.1
  • 17
    • 2442639085 scopus 로고    scopus 로고
    • Chronic prostatitis: MR imaging and 1H MR spectroscopic imaging findings-initial observations
    • Shukla-Dave A, Hricak H, Eberhardt SC, et al. Chronic prostatitis: MR imaging and 1H MR spectroscopic imaging findings-initial observations. Radiology 2004;231:717-724.
    • (2004) Radiology , vol.231 , pp. 717-724
    • Shukla-Dave, A.1    Hricak, H.2    Eberhardt, S.C.3
  • 18
    • 77953264918 scopus 로고    scopus 로고
    • Prostate MRI and 3D MR spectroscopy: How we do it
    • Verma S, Rajesh A, Ftterer J, et al. Prostate MRI and 3D MR spectroscopy: how we do it. AJR Am J Roentgenol 2010;194:1414-1426.
    • (2010) AJR Am J Roentgenol , vol.194 , pp. 1414-1426
    • Verma, S.1    Rajesh, A.2    Ftterer, J.3
  • 19
    • 77953007681 scopus 로고    scopus 로고
    • Metabolomic imaging for human prostate cancer detection
    • Wu C-L, Jordan K, Ratai E, et al. Metabolomic imaging for human prostate cancer detection. Sci Transl Med 2010;2:16ra18-16ra18.
    • (2010) Sci Transl Med , vol.2 , pp. 16ra18-16ra18
    • Wu, C.-L.1    Jordan, K.2    Ratai, E.3
  • 20
    • 54949137302 scopus 로고    scopus 로고
    • 1H magnetic resonance spectroscopy of prostate cancer: Biomarkers for tumor characterization
    • Zakian K, Shukla-Dave A, Ackerstaff E, Hricak H, Koutcher J. 1H magnetic resonance spectroscopy of prostate cancer: biomarkers for tumor characterization. Cancer Biomarkers 2008;4:263-276.
    • (2008) Cancer Biomarkers , vol.4 , pp. 263-276
    • Zakian, K.1    Shukla-Dave, A.2    Ackerstaff, E.3    Hricak, H.4    Koutcher, J.5
  • 21
    • 33746901239 scopus 로고    scopus 로고
    • The use of artificial neural networks in decision support in cancer: A systematic review
    • Lisboa P, Taktak AFG. The use of artificial neural networks in decision support in cancer: a systematic review. Neural Netw 2006;19:408-115.
    • (2006) Neural Netw , vol.19 , pp. 408-115
    • Lisboa, P.1    Taktak, A.F.G.2
  • 23
    • 50249187241 scopus 로고    scopus 로고
    • Critical assessment of tools to predict clinically insignificant prostate cancer at radical prostatectomy in contemporary men
    • Chun FK, Haese A, Ahyai SA, et al. Critical assessment of tools to predict clinically insignificant prostate cancer at radical prostatectomy in contemporary men. Cancer 2008;113:701-709.
    • (2008) Cancer , vol.113 , pp. 701-709
    • Chun, F.K.1    Haese, A.2    Ahyai, S.A.3
  • 24
    • 74049098329 scopus 로고    scopus 로고
    • Internal validation of an artificial neural network for prostate biopsy outcome
    • Stephan C, Cammann H, Bender M, et al. Internal validation of an artificial neural network for prostate biopsy outcome. Int J Urol 2010;17:62-68.
    • (2010) Int J Urol , vol.17 , pp. 62-68
    • Stephan, C.1    Cammann, H.2    Bender, M.3
  • 25
    • 47249157999 scopus 로고    scopus 로고
    • Development, validation, and head-to-head comparison of logistic regression-based nomograms and artificial neural network models predicting prostate cancer on initial extended biopsy
    • Kawakami S, Numao N, Okubo Y, et al. Development, validation, and head-to-head comparison of logistic regression-based nomograms and artificial neural network models predicting prostate cancer on initial extended biopsy. Eur Urol 2008;54:601-611.
    • (2008) Eur Urol , vol.54 , pp. 601-611
    • Kawakami, S.1    Numao, N.2    Okubo, Y.3
  • 26
    • 77952093742 scopus 로고    scopus 로고
    • Image-based clinical decision support for transrectal ultrasound in the diagnosis of prostate cancer: Comparison of multiple logistic regression, artificial neural network, and support vector machine
    • Lee HJ, Hwang SI, Han SM, et al. Image-based clinical decision support for transrectal ultrasound in the diagnosis of prostate cancer: comparison of multiple logistic regression, artificial neural network, and support vector machine. Eur Radiol 2010;20:1476-1484.
    • (2010) Eur Radiol , vol.20 , pp. 1476-1484
    • Lee, H.J.1    Hwang, S.I.2    Han, S.M.3
  • 28
    • 84857647678 scopus 로고    scopus 로고
    • Outcome prediction for prostate cancer detection rate with artificial neural network (ANN) in daily routine
    • Ecke TH, Bartel P, Hallmann S, et al. Outcome prediction for prostate cancer detection rate with artificial neural network (ANN) in daily routine. Urol Oncol 2012;30:139-144.
    • (2012) Urol Oncol , vol.30 , pp. 139-144
    • Ecke, T.H.1    Bartel, P.2    Hallmann, S.3
  • 29
    • 79953815257 scopus 로고    scopus 로고
    • Predicting prostate biopsy outcome: Artificial neural networks and polychotomous regression are equivalent models
    • Lawrentschuk N, Lockwood G, Davies P, et al. Predicting prostate biopsy outcome: artificial neural networks and polychotomous regression are equivalent models. Int Urol Nephrol 2011;43:23-30.
    • (2011) Int Urol Nephrol , vol.43 , pp. 23-30
    • Lawrentschuk, N.1    Lockwood, G.2    Davies, P.3
  • 30
    • 18244432236 scopus 로고    scopus 로고
    • Predicting the outcome of prostate biopsy in screen-positive men by a multilayer perceptron network
    • Finne P, Finne R, Auvinen A, et al. Predicting the outcome of prostate biopsy in screen-positive men by a multilayer perceptron network. Urology 2000;56:418-422.
    • (2000) Urology , vol.56 , pp. 418-422
    • Finne, P.1    Finne, R.2    Auvinen, A.3
  • 31
    • 0036844831 scopus 로고    scopus 로고
    • Predicting the outcome of prostate biopsy in a racially diverse population: A prospective study
    • Porter CR, O'Donnell C, Crawford ED, et al. Predicting the outcome of prostate biopsy in a racially diverse population: a prospective study. Urology 2002;60:831-835.
    • (2002) Urology , vol.60 , pp. 831-835
    • Porter, C.R.1    O'Donnell, C.2    Crawford, E.D.3
  • 32
    • 0042734859 scopus 로고    scopus 로고
    • An artificial neural network to predict the outcome of repeat prostate biopsies
    • Remzi M, Anagnostou T, Ravery V, et al. An artificial neural network to predict the outcome of repeat prostate biopsies. Urology 2003;62:456-460.
    • (2003) Urology , vol.62 , pp. 456-460
    • Remzi, M.1    Anagnostou, T.2    Ravery, V.3
  • 33
    • 1542673203 scopus 로고    scopus 로고
    • Combining artificial neural networks and transrectal ultrasound in the diagnosis of prostate cancer
    • discussion 1399, 1403-1396
    • Porter CR, Crawford ED. Combining artificial neural networks and transrectal ultrasound in the diagnosis of prostate cancer. Oncology (Williston Park) 2003;17:1395-1399; discussion 1399, 1403-1396.
    • (2003) Oncology (Williston Park) , vol.17 , pp. 1395-1399
    • Porter, C.R.1    Crawford, E.D.2
  • 34
    • 84885369708 scopus 로고    scopus 로고
    • Simultaneous segmentation of prostatic zones using active appearance models with multiple coupled levelsets
    • Toth R, Ribault J, Gentile J, Sperling D, Madabhushi A. Simultaneous segmentation of prostatic zones using active appearance models with multiple coupled levelsets. Comput Vision Image Understand 2013;117:1051-1060.
    • (2013) Comput Vision Image Understand , vol.117 , pp. 1051-1060
    • Toth, R.1    Ribault, J.2    Gentile, J.3    Sperling, D.4    Madabhushi, A.5
  • 35
    • 84883872846 scopus 로고    scopus 로고
    • Multi-kernel graph embedding for detection, Gleason grading of prostate cancer via MRI/MRS
    • Tiwari P, Kurhanewicz J, Madabhushi A. Multi-kernel graph embedding for detection, Gleason grading of prostate cancer via MRI/MRS. Med Image Anal 2013;17:219-235.
    • (2013) Med Image Anal , vol.17 , pp. 219-235
    • Tiwari, P.1    Kurhanewicz, J.2    Madabhushi, A.3
  • 36
    • 84862736916 scopus 로고    scopus 로고
    • Central gland and peripheral zone prostate tumors have significantly different quantitative imaging signatures on 3 Tesla endorectal, in vivo T2-weighted MR imagery
    • Viswanath SE, Bloch NB, Chappelow JC, et al. Central gland and peripheral zone prostate tumors have significantly different quantitative imaging signatures on 3 Tesla endorectal, in vivo T2-weighted MR imagery. J Magn Reson Imaging 2012;36:213-224.
    • (2012) J Magn Reson Imaging , vol.36 , pp. 213-224
    • Viswanath, S.E.1    Bloch, N.B.2    Chappelow, J.C.3
  • 38
    • 77149152172 scopus 로고    scopus 로고
    • The effect of experimental conditions on the detection of spermine in cell extracts and tissues
    • Spencer NG, Eykyn TR, deSouza NM, Payne GS. The effect of experimental conditions on the detection of spermine in cell extracts and tissues. NMR Biomed 2010;23:163-169.
    • (2010) NMR Biomed , vol.23 , pp. 163-169
    • Spencer, N.G.1    Eykyn, T.R.2    DeSouza, N.M.3    Payne, G.S.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.