-
2
-
-
77952428938
-
Support vector regression for porosity prediction in a heterogeneous reservoir: A comparative study
-
Al-Anazi, A. F., & Gates, I. D. (2010). Support vector regression for porosity prediction in a heterogeneous reservoir: A comparative study. Computers and Geosciences, 36, 1494-1503.
-
(2010)
Computers and Geosciences
, vol.36
, pp. 1494-1503
-
-
Al-Anazi, A.F.1
Gates, I.D.2
-
3
-
-
84855555199
-
Support vector regression to predict porosity and permeability: Effect of sample size
-
Al-Anazi, A. F., & Gates, I. D. (2012). Support vector regression to predict porosity and permeability: Effect of sample size. Computers and Geosciences, 39, 64-76.
-
(2012)
Computers and Geosciences
, vol.39
, pp. 64-76
-
-
Al-Anazi, A.F.1
Gates, I.D.2
-
4
-
-
1142286882
-
Neural networks: A new tool for the petroleum industry
-
Aberdeen, UK: Society of Petroleum Engineers
-
Ali, J. K. (1994). Neural networks: A new tool for the petroleum industry. Proceedings of the European petroleum computer conference (pp. 217-231). Aberdeen, UK: Society of Petroleum Engineers. doi:10.2118/27561-MS
-
(1994)
Proceedings of the European Petroleum Computer Conference
, pp. 217-231
-
-
Ali, J.K.1
-
6
-
-
84909952289
-
-
December) Dhahran, Saudi Arabia. Retrieved from
-
Anifowose, F. A., & Abdulraheem, A. (2010, December). How small is a small data? Proceedings of the 2nd Saudi conference on oil & gas exploration & production (pp. 18-20), Dhahran, Saudi Arabia. Retrieved from http://www.docstoc.com/docs/124372315/2010-Oil-and-Natural-Gas-Conference
-
(2010)
How Small is A Small Data? Proceedings of the 2nd Saudi Conference on Oil & Gas Exploration & Production
, pp. 18-20
-
-
Anifowose, F.A.1
Abdulraheem, A.2
-
7
-
-
79960435554
-
Fuzzy logic-driven and SVM-driven hybrid computational intelligence models applied to oil and gas reservoir characterization
-
Anifowose, F. A., & Abdulraheem, A. (2011). Fuzzy logic-driven and SVM-driven hybrid computational intelligence models applied to oil and gas reservoir characterization. Journal of Natural Gas Science and Engineering, 3, 505-517.
-
(2011)
Journal of Natural Gas Science and Engineering
, vol.3
, pp. 505-517
-
-
Anifowose, F.A.1
Abdulraheem, A.2
-
8
-
-
23444462420
-
Functional networks in real-time flood forecasting - A novel application
-
Bruen, M., & Yang, J. (2005). Functional networks in real-time flood forecasting - A novel application. Advances in Water Resources, 28, 899-909.
-
(2005)
Advances in Water Resources
, vol.28
, pp. 899-909
-
-
Bruen, M.1
Yang, J.2
-
10
-
-
0343844120
-
Some applications of functional networks in statistics and engineering
-
Castillo, E., Gutierrez, J. M., Hadi, A. S., & Lacruz, B. (2001). Some applications of functional networks in statistics and engineering. Technometrics, 43, 10-24.
-
(2001)
Technometrics
, vol.43
, pp. 10-24
-
-
Castillo, E.1
Gutierrez, J.M.2
Hadi, A.S.3
Lacruz, B.4
-
11
-
-
57849130214
-
Optimal transformations in multiple linear regression using functional networks
-
Lecture Notes in Computer Science
-
Castillo, E., Hadi, A. S., & Lacruz, B. (2001). Optimal transformations in multiple linear regression using functional networks. Proceedings of the international work-conference on artificial and natural neural networks (Vol. 2084, pp. 316-324). Lecture Notes in Computer Science.
-
(2001)
Proceedings of the International Work-conference on Artificial and Natural Neural Networks
, vol.2084
, pp. 316-324
-
-
Castillo, E.1
Hadi, A.S.2
Lacruz, B.3
-
13
-
-
40649101485
-
Type-2 fuzzy logic based classifier fusion for support vector machines
-
Chen, X., Li, Y., Harrison, R., & Zhang, Y. Q. (2007). Type-2 fuzzy logic based classifier fusion for support vector machines. Applied Soft Computing Journal. doi:10.1016/j.asoc.2007.02.019
-
(2007)
Applied Soft Computing Journal
-
-
Chen, X.1
Li, Y.2
Harrison, R.3
Zhang, Y.Q.4
-
15
-
-
84859174817
-
Training SVM email classifiers using very large imbalanced dataset
-
Diao, L., Yang, C., & Wang, H. (2012). Training SVM email classifiers using very large imbalanced dataset. Journal of Experimental & Theoretical Artificial Intelligence, 24, 193-210.
-
(2012)
Journal of Experimental & Theoretical Artificial Intelligence
, vol.24
, pp. 193-210
-
-
Diao, L.1
Yang, C.2
Wang, H.3
-
17
-
-
59349086120
-
Forecasting PVT properties of crude oil systems based on support vector machines modeling scheme
-
El-Sebakhy, E. A. (2009). Forecasting PVT properties of crude oil systems based on support vector machines modeling scheme. Journal of Petroleum Science and Engineering, 64, 25-34.
-
(2009)
Journal of Petroleum Science and Engineering
, vol.64
, pp. 25-34
-
-
El-Sebakhy, E.A.1
-
18
-
-
78049526683
-
Functional networks as a novel data mining paradigm in forecasting software development efforts
-
El-Sebakhy, E. A. (2011). Functional networks as a novel data mining paradigm in forecasting software development efforts. Expert Systems with Applications, 38, 2187-2194.
-
(2011)
Expert Systems with Applications
, vol.38
, pp. 2187-2194
-
-
El-Sebakhy, E.A.1
-
19
-
-
0031127821
-
Fuzzy modeling and the prediction of porosity and permeability from the compositional and textural attributes of sandstone
-
Fang, J. H., & Chen, H. C. (1997). Fuzzy modeling and the prediction of porosity and permeability from the compositional and textural attributes of sandstone. Journal of Petroleum Geology, 20, 185-204.
-
(1997)
Journal of Petroleum Geology
, vol.20
, pp. 185-204
-
-
Fang, J.H.1
Chen, H.C.2
-
20
-
-
33749560322
-
A tutorial introduction to the minimum description length principle
-
P. Grünwald, I. J. Myung, & M. Pitt (Eds.) ). Cambridge, MA: MIT Press.
-
Grünwald, P. (2005). A tutorial introduction to the minimum description length principle. In P. Grünwald, I. J. Myung, & M. Pitt (Eds.), Advances in minimum description length: Theory and applications (pp. 5-71). Cambridge, MA: MIT Press.
-
(2005)
Advances in Minimum Description Length: Theory and Applications
, pp. 5-71
-
-
Grünwald, P.1
-
21
-
-
78349266079
-
Hybrid computational intelligence models for porosity and permeability prediction of petroleum reservoirs
-
Helmy, T., & Anifowose, F. (2010). Hybrid computational intelligence models for porosity and permeability prediction of petroleum reservoirs. International Journal of Computational Intelligence and Applications, 9, 313-337.
-
(2010)
International Journal of Computational Intelligence and Applications
, vol.9
, pp. 313-337
-
-
Helmy, T.1
Anifowose, F.2
-
22
-
-
77950300963
-
Hybrid computational models for the characterization of oil and gas reservoirs
-
Helmy, T., Anifowose, F., & Faisal, K. (2010). Hybrid computational models for the characterization of oil and gas reservoirs. International Journal of Expert Systems with Applications, 37, 5353-5363.
-
(2010)
International Journal of Expert Systems with Applications
, vol.37
, pp. 5353-5363
-
-
Helmy, T.1
Anifowose, F.2
Faisal, K.3
-
23
-
-
0027601884
-
ANFIS: Adaptive-network-based fuzzy inference systems
-
Jang, J. S. R. (1993). ANFIS: Adaptive-network-based fuzzy inference systems. IEEE Transactions on Systems, Man, and Cybernetics, 23, 665-685.
-
(1993)
IEEE Transactions on Systems, Man, and Cybernetics
, vol.23
, pp. 665-685
-
-
Jang, J.S.R.1
-
26
-
-
29544449323
-
Reservoir properties determination using fuzzy logic and neural networks from well data in offshore Korea
-
Jong-Se, L. (2005). Reservoir properties determination using fuzzy logic and neural networks from well data in offshore Korea. Journal of Petroleum Science and Engineering, 49, 182-192.
-
(2005)
Journal of Petroleum Science and Engineering
, vol.49
, pp. 182-192
-
-
Jong-Se, L.1
-
28
-
-
0033844049
-
Using artificial intelligence to predict permeability from petrographic data
-
Maqsood, A., & Adwait, C. (2000). Using artificial intelligence to predict permeability from petrographic data. Computers and Geosciences, 26, 915-925.
-
(2000)
Computers and Geosciences
, vol.26
, pp. 915-925
-
-
Maqsood, A.1
Adwait, C.2
-
31
-
-
34548671418
-
Design of neural networks using genetic algorithm for the permeability estimation of the reservoir
-
Mohsen, S., Morteza, A., & Alli, Y. V. (2007). Design of neural networks using genetic algorithm for the permeability estimation of the reservoir. Journal of Petroleum Science and Engineering, 59, 97-105.
-
(2007)
Journal of Petroleum Science and Engineering
, vol.59
, pp. 97-105
-
-
Mohsen, S.1
Morteza, A.2
Alli, Y.V.3
-
32
-
-
84909958988
-
-
Retrieved from
-
Neural Computing Research Group, Information Engineering, Aston University, Birmingham B4 7ET, United Kingdom. (2012). Retrieved from http://www.ncrg.aston.ac.uk/netlab
-
(2012)
-
-
-
33
-
-
84909951465
-
-
October 3). A note on Tikhonov regularization of linear ill-posed problems (Special Report)
-
Nguyen, N. C. (2006, October 3). A note on Tikhonov regularization of linear ill-posed problems (Special Report). Cambridge, MA: Massachusetts Institute of Technology.
-
(2006)
Cambridge, MA: Massachusetts Institute of Technology
-
-
Nguyen, N.C.1
-
34
-
-
78751643180
-
Modeling the permeability of carbonate reservoir using Type-2 fuzzy logic systems
-
Olatunji, S. O., Selamat, A., & Abdulraheem, A. (2011a). Modeling the permeability of carbonate reservoir using Type-2 fuzzy logic systems. Computers in Industry, 62, 147-163.
-
(2011)
Computers in Industry
, vol.62
, pp. 147-163
-
-
Olatunji, S.O.1
Selamat, A.2
Abdulraheem, A.3
-
35
-
-
79955636227
-
Predicting correlations properties of crude oil systems using Type-2 fuzzy logic systems
-
Olatunji, S. O., Selamat, A., & Abdulraheem, A. (2011b). Predicting correlations properties of crude oil systems using Type-2 fuzzy logic systems. Expert Systems with Applications, 38, 10911-10922.
-
(2011)
Expert Systems with Applications
, vol.38
, pp. 10911-10922
-
-
Olatunji, S.O.1
Selamat, A.2
Abdulraheem, A.3
-
36
-
-
69249212288
-
A normal least squares support vector machine (NLS-SVM) and its learning algorithm
-
Peng, X., & Wang, Y. (2009). A normal least squares support vector machine (NLS-SVM) and its learning algorithm. Neurocomputing, 72, 3734-3741.
-
(2009)
Neurocomputing
, vol.72
, pp. 3734-3741
-
-
Peng, X.1
Wang, Y.2
-
38
-
-
33845528315
-
Artificial intelligence in theory and practice
-
M. Bramer (Ed.) ). Boston: Springer.
-
Rusu, C., & Rusu, V. (2006). Artificial intelligence in theory and practice. In M. Bramer (Ed.), International federation for information processing (pp. 119-128). Boston: Springer.
-
(2006)
International Federation for Information Processing
, pp. 119-128
-
-
Rusu, C.1
Rusu, V.2
-
40
-
-
84909951260
-
Excellence in educational development
-
Retrieved from
-
Schlumberger. (2007b). Excellence in educational development. Science lab project. Retrieved from www.seed.slb.com/en/scictr/lab/porosity/index.htm
-
(2007)
Science Lab Project
-
-
Schlumberger1
-
42
-
-
34047265152
-
Creating a quality map of a slate deposit using support vector machines
-
Taboada, J., Matias, J. M., Ordonez, C., & Garcia, P. J. (2007). Creating a quality map of a slate deposit using support vector machines. Journal of Computational and Applied Mathematics, 204, 84-94.
-
(2007)
Journal of Computational and Applied Mathematics
, vol.204
, pp. 84-94
-
-
Taboada, J.1
Matias, J.M.2
Ordonez, C.3
Garcia, P.J.4
-
46
-
-
79956124873
-
Combining least-squares support vector machines for classification of biomedical signals: A case study with knee-joint vibroarthrographic signals
-
Wu, Y., & Krishnan, S. (2011). Combining least-squares support vector machines for classification of biomedical signals: A case study with knee-joint vibroarthrographic signals. Journal of Experimental & Theoretical Artificial Intelligence, 23, 63-77.
-
(2011)
Journal of Experimental & Theoretical Artificial Intelligence
, vol.23
, pp. 63-77
-
-
Wu, Y.1
Krishnan, S.2
-
47
-
-
84862277678
-
SVM versus least squares SVM. Proceedings of the eleventh international conference on artificial intelligence and statistics (AISTATS-07)
-
Ye, J., & Xiong, T. (2007). SVM versus least squares SVM. Proceedings of the eleventh international conference on artificial intelligence and statistics (AISTATS-07). Journal of Machine Learning Research - Proceedings Track, 2, 644-651.
-
(2007)
Journal of Machine Learning Research - Proceedings Track
, vol.2
, pp. 644-651
-
-
Ye, J.1
Xiong, T.2
-
48
-
-
53849104293
-
A Type-2 fuzzy rule-based expert system model for stock price analysis
-
Zerandi, H., Rezaee, B., Turksen, I. B., & Neshat, E. (2007). A Type-2 fuzzy rule-based expert system model for stock price analysis. Expert Systems with Applications. doi:10.1016/j.eswa.2007.09.034
-
(2007)
Expert Systems with Applications
-
-
Zerandi, H.1
Rezaee, B.2
Turksen, I.B.3
Neshat, E.4
|