메뉴 건너뛰기




Volumn 26, Issue 4, 2014, Pages 551-570

Recent advances in the application of computational intelligence techniques in oil and gas reservoir characterisation: A comparative study

Author keywords

computational intelligence; functional networks; machine learning; petroleum reservoir characterisation; support vector machines; Type 2 fuzzy logic system

Indexed keywords

ARTIFICIAL INTELLIGENCE; COMPUTER CIRCUITS; DATA HANDLING; FUZZY LOGIC; GASOLINE; INTELLIGENT COMPUTING; LEARNING SYSTEMS; PETROLEUM RESERVOIRS; POROSITY; SUPPORT VECTOR MACHINES;

EID: 84909955739     PISSN: 0952813X     EISSN: 13623079     Source Type: Journal    
DOI: 10.1080/0952813X.2014.924577     Document Type: Article
Times cited : (35)

References (48)
  • 2
    • 77952428938 scopus 로고    scopus 로고
    • Support vector regression for porosity prediction in a heterogeneous reservoir: A comparative study
    • Al-Anazi, A. F., & Gates, I. D. (2010). Support vector regression for porosity prediction in a heterogeneous reservoir: A comparative study. Computers and Geosciences, 36, 1494-1503.
    • (2010) Computers and Geosciences , vol.36 , pp. 1494-1503
    • Al-Anazi, A.F.1    Gates, I.D.2
  • 3
    • 84855555199 scopus 로고    scopus 로고
    • Support vector regression to predict porosity and permeability: Effect of sample size
    • Al-Anazi, A. F., & Gates, I. D. (2012). Support vector regression to predict porosity and permeability: Effect of sample size. Computers and Geosciences, 39, 64-76.
    • (2012) Computers and Geosciences , vol.39 , pp. 64-76
    • Al-Anazi, A.F.1    Gates, I.D.2
  • 4
    • 1142286882 scopus 로고
    • Neural networks: A new tool for the petroleum industry
    • Aberdeen, UK: Society of Petroleum Engineers
    • Ali, J. K. (1994). Neural networks: A new tool for the petroleum industry. Proceedings of the European petroleum computer conference (pp. 217-231). Aberdeen, UK: Society of Petroleum Engineers. doi:10.2118/27561-MS
    • (1994) Proceedings of the European Petroleum Computer Conference , pp. 217-231
    • Ali, J.K.1
  • 7
    • 79960435554 scopus 로고    scopus 로고
    • Fuzzy logic-driven and SVM-driven hybrid computational intelligence models applied to oil and gas reservoir characterization
    • Anifowose, F. A., & Abdulraheem, A. (2011). Fuzzy logic-driven and SVM-driven hybrid computational intelligence models applied to oil and gas reservoir characterization. Journal of Natural Gas Science and Engineering, 3, 505-517.
    • (2011) Journal of Natural Gas Science and Engineering , vol.3 , pp. 505-517
    • Anifowose, F.A.1    Abdulraheem, A.2
  • 8
    • 23444462420 scopus 로고    scopus 로고
    • Functional networks in real-time flood forecasting - A novel application
    • Bruen, M., & Yang, J. (2005). Functional networks in real-time flood forecasting - A novel application. Advances in Water Resources, 28, 899-909.
    • (2005) Advances in Water Resources , vol.28 , pp. 899-909
    • Bruen, M.1    Yang, J.2
  • 10
    • 0343844120 scopus 로고    scopus 로고
    • Some applications of functional networks in statistics and engineering
    • Castillo, E., Gutierrez, J. M., Hadi, A. S., & Lacruz, B. (2001). Some applications of functional networks in statistics and engineering. Technometrics, 43, 10-24.
    • (2001) Technometrics , vol.43 , pp. 10-24
    • Castillo, E.1    Gutierrez, J.M.2    Hadi, A.S.3    Lacruz, B.4
  • 13
    • 40649101485 scopus 로고    scopus 로고
    • Type-2 fuzzy logic based classifier fusion for support vector machines
    • Chen, X., Li, Y., Harrison, R., & Zhang, Y. Q. (2007). Type-2 fuzzy logic based classifier fusion for support vector machines. Applied Soft Computing Journal. doi:10.1016/j.asoc.2007.02.019
    • (2007) Applied Soft Computing Journal
    • Chen, X.1    Li, Y.2    Harrison, R.3    Zhang, Y.Q.4
  • 17
    • 59349086120 scopus 로고    scopus 로고
    • Forecasting PVT properties of crude oil systems based on support vector machines modeling scheme
    • El-Sebakhy, E. A. (2009). Forecasting PVT properties of crude oil systems based on support vector machines modeling scheme. Journal of Petroleum Science and Engineering, 64, 25-34.
    • (2009) Journal of Petroleum Science and Engineering , vol.64 , pp. 25-34
    • El-Sebakhy, E.A.1
  • 18
    • 78049526683 scopus 로고    scopus 로고
    • Functional networks as a novel data mining paradigm in forecasting software development efforts
    • El-Sebakhy, E. A. (2011). Functional networks as a novel data mining paradigm in forecasting software development efforts. Expert Systems with Applications, 38, 2187-2194.
    • (2011) Expert Systems with Applications , vol.38 , pp. 2187-2194
    • El-Sebakhy, E.A.1
  • 19
    • 0031127821 scopus 로고    scopus 로고
    • Fuzzy modeling and the prediction of porosity and permeability from the compositional and textural attributes of sandstone
    • Fang, J. H., & Chen, H. C. (1997). Fuzzy modeling and the prediction of porosity and permeability from the compositional and textural attributes of sandstone. Journal of Petroleum Geology, 20, 185-204.
    • (1997) Journal of Petroleum Geology , vol.20 , pp. 185-204
    • Fang, J.H.1    Chen, H.C.2
  • 20
    • 33749560322 scopus 로고    scopus 로고
    • A tutorial introduction to the minimum description length principle
    • P. Grünwald, I. J. Myung, & M. Pitt (Eds.) ). Cambridge, MA: MIT Press.
    • Grünwald, P. (2005). A tutorial introduction to the minimum description length principle. In P. Grünwald, I. J. Myung, & M. Pitt (Eds.), Advances in minimum description length: Theory and applications (pp. 5-71). Cambridge, MA: MIT Press.
    • (2005) Advances in Minimum Description Length: Theory and Applications , pp. 5-71
    • Grünwald, P.1
  • 21
    • 78349266079 scopus 로고    scopus 로고
    • Hybrid computational intelligence models for porosity and permeability prediction of petroleum reservoirs
    • Helmy, T., & Anifowose, F. (2010). Hybrid computational intelligence models for porosity and permeability prediction of petroleum reservoirs. International Journal of Computational Intelligence and Applications, 9, 313-337.
    • (2010) International Journal of Computational Intelligence and Applications , vol.9 , pp. 313-337
    • Helmy, T.1    Anifowose, F.2
  • 26
    • 29544449323 scopus 로고    scopus 로고
    • Reservoir properties determination using fuzzy logic and neural networks from well data in offshore Korea
    • Jong-Se, L. (2005). Reservoir properties determination using fuzzy logic and neural networks from well data in offshore Korea. Journal of Petroleum Science and Engineering, 49, 182-192.
    • (2005) Journal of Petroleum Science and Engineering , vol.49 , pp. 182-192
    • Jong-Se, L.1
  • 28
    • 0033844049 scopus 로고    scopus 로고
    • Using artificial intelligence to predict permeability from petrographic data
    • Maqsood, A., & Adwait, C. (2000). Using artificial intelligence to predict permeability from petrographic data. Computers and Geosciences, 26, 915-925.
    • (2000) Computers and Geosciences , vol.26 , pp. 915-925
    • Maqsood, A.1    Adwait, C.2
  • 31
    • 34548671418 scopus 로고    scopus 로고
    • Design of neural networks using genetic algorithm for the permeability estimation of the reservoir
    • Mohsen, S., Morteza, A., & Alli, Y. V. (2007). Design of neural networks using genetic algorithm for the permeability estimation of the reservoir. Journal of Petroleum Science and Engineering, 59, 97-105.
    • (2007) Journal of Petroleum Science and Engineering , vol.59 , pp. 97-105
    • Mohsen, S.1    Morteza, A.2    Alli, Y.V.3
  • 32
    • 84909958988 scopus 로고    scopus 로고
    • Retrieved from
    • Neural Computing Research Group, Information Engineering, Aston University, Birmingham B4 7ET, United Kingdom. (2012). Retrieved from http://www.ncrg.aston.ac.uk/netlab
    • (2012)
  • 33
    • 84909951465 scopus 로고    scopus 로고
    • October 3). A note on Tikhonov regularization of linear ill-posed problems (Special Report)
    • Nguyen, N. C. (2006, October 3). A note on Tikhonov regularization of linear ill-posed problems (Special Report). Cambridge, MA: Massachusetts Institute of Technology.
    • (2006) Cambridge, MA: Massachusetts Institute of Technology
    • Nguyen, N.C.1
  • 34
    • 78751643180 scopus 로고    scopus 로고
    • Modeling the permeability of carbonate reservoir using Type-2 fuzzy logic systems
    • Olatunji, S. O., Selamat, A., & Abdulraheem, A. (2011a). Modeling the permeability of carbonate reservoir using Type-2 fuzzy logic systems. Computers in Industry, 62, 147-163.
    • (2011) Computers in Industry , vol.62 , pp. 147-163
    • Olatunji, S.O.1    Selamat, A.2    Abdulraheem, A.3
  • 35
    • 79955636227 scopus 로고    scopus 로고
    • Predicting correlations properties of crude oil systems using Type-2 fuzzy logic systems
    • Olatunji, S. O., Selamat, A., & Abdulraheem, A. (2011b). Predicting correlations properties of crude oil systems using Type-2 fuzzy logic systems. Expert Systems with Applications, 38, 10911-10922.
    • (2011) Expert Systems with Applications , vol.38 , pp. 10911-10922
    • Olatunji, S.O.1    Selamat, A.2    Abdulraheem, A.3
  • 36
    • 69249212288 scopus 로고    scopus 로고
    • A normal least squares support vector machine (NLS-SVM) and its learning algorithm
    • Peng, X., & Wang, Y. (2009). A normal least squares support vector machine (NLS-SVM) and its learning algorithm. Neurocomputing, 72, 3734-3741.
    • (2009) Neurocomputing , vol.72 , pp. 3734-3741
    • Peng, X.1    Wang, Y.2
  • 38
    • 33845528315 scopus 로고    scopus 로고
    • Artificial intelligence in theory and practice
    • M. Bramer (Ed.) ). Boston: Springer.
    • Rusu, C., & Rusu, V. (2006). Artificial intelligence in theory and practice. In M. Bramer (Ed.), International federation for information processing (pp. 119-128). Boston: Springer.
    • (2006) International Federation for Information Processing , pp. 119-128
    • Rusu, C.1    Rusu, V.2
  • 40
    • 84909951260 scopus 로고    scopus 로고
    • Excellence in educational development
    • Retrieved from
    • Schlumberger. (2007b). Excellence in educational development. Science lab project. Retrieved from www.seed.slb.com/en/scictr/lab/porosity/index.htm
    • (2007) Science Lab Project
    • Schlumberger1
  • 46
    • 79956124873 scopus 로고    scopus 로고
    • Combining least-squares support vector machines for classification of biomedical signals: A case study with knee-joint vibroarthrographic signals
    • Wu, Y., & Krishnan, S. (2011). Combining least-squares support vector machines for classification of biomedical signals: A case study with knee-joint vibroarthrographic signals. Journal of Experimental & Theoretical Artificial Intelligence, 23, 63-77.
    • (2011) Journal of Experimental & Theoretical Artificial Intelligence , vol.23 , pp. 63-77
    • Wu, Y.1    Krishnan, S.2
  • 47
    • 84862277678 scopus 로고    scopus 로고
    • SVM versus least squares SVM. Proceedings of the eleventh international conference on artificial intelligence and statistics (AISTATS-07)
    • Ye, J., & Xiong, T. (2007). SVM versus least squares SVM. Proceedings of the eleventh international conference on artificial intelligence and statistics (AISTATS-07). Journal of Machine Learning Research - Proceedings Track, 2, 644-651.
    • (2007) Journal of Machine Learning Research - Proceedings Track , vol.2 , pp. 644-651
    • Ye, J.1    Xiong, T.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.