메뉴 건너뛰기




Volumn 39, Issue , 2012, Pages 64-76

Support vector regression to predict porosity and permeability: Effect of sample size

Author keywords

Artificial neural networks; Core data; Log data; Loss function; Permeability prediction; Porosity prediction; Small sample size; Support vector machines

Indexed keywords

CORE DATA; LOG DATA; LOSS FUNCTION; PERMEABILITY PREDICTION; POROSITY PREDICTION; SMALL SAMPLE SIZE; SUPPORT VECTOR;

EID: 84855555199     PISSN: 00983004     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.cageo.2011.06.011     Document Type: Article
Times cited : (160)

References (31)
  • 1
    • 77952425587 scopus 로고    scopus 로고
    • On the capability of support vector machines to classify lithology
    • Al-Anazi A., Gates I.D. On the capability of support vector machines to classify lithology. Natural Resources Research 2010, 19(2):125-139.
    • (2010) Natural Resources Research , vol.19 , Issue.2 , pp. 125-139
    • Al-Anazi, A.1    Gates, I.D.2
  • 2
    • 77952424965 scopus 로고    scopus 로고
    • Support vector regression for permeability prediction in a heterogeneous reservoir: a comparative study
    • Al-Anazi A., Gates I.D. Support vector regression for permeability prediction in a heterogeneous reservoir: a comparative study. SPE Reservoir Evaluation and Engineering 2010, 13(3):485-495.
    • (2010) SPE Reservoir Evaluation and Engineering , vol.13 , Issue.3 , pp. 485-495
    • Al-Anazi, A.1    Gates, I.D.2
  • 3
    • 77955173749 scopus 로고    scopus 로고
    • A support vector machine algorithm to classify lithofacies and model permeability in heterogeneous reservoirs
    • Al-Anazi A., Gates I.D. A support vector machine algorithm to classify lithofacies and model permeability in heterogeneous reservoirs. Engineering Geology 2010, 114(3-4):267-277.
    • (2010) Engineering Geology , vol.114 , Issue.3-4 , pp. 267-277
    • Al-Anazi, A.1    Gates, I.D.2
  • 4
    • 77952428938 scopus 로고    scopus 로고
    • Support vector regression for porosity prediction in a heterogeneous reservoir: a comparative study
    • Al-Anazi A.F., Gates I.D. Support vector regression for porosity prediction in a heterogeneous reservoir: a comparative study. Computers and Geosciences 2010, 36(12):1494-1503.
    • (2010) Computers and Geosciences , vol.36 , Issue.12 , pp. 1494-1503
    • Al-Anazi, A.F.1    Gates, I.D.2
  • 5
    • 10944265308 scopus 로고    scopus 로고
    • Selecting of the loss function for robust linear regression
    • Cherkassky V., Ma Y. Selecting of the loss function for robust linear regression. Neural Computation 2004, 1:395-400.
    • (2004) Neural Computation , vol.1 , pp. 395-400
    • Cherkassky, V.1    Ma, Y.2
  • 7
    • 84951831437 scopus 로고    scopus 로고
    • Handwriting recognition using local methods for normalization and global methods for recognition
    • Proceedings of Sixth International Conference on Document Analysis and Recognition.
    • Choisy, C., Belaid, A., 2001. Handwriting recognition using local methods for normalization and global methods for recognition. In: Proceedings of Sixth International Conference on Document Analysis and Recognition, pp. 23-27.
    • (2001) , pp. 23-27
    • Choisy, C.1    Belaid, A.2
  • 8
    • 0031348892 scopus 로고    scopus 로고
    • Modular artificial neural network for prediction of petrophysical properties from well log data
    • Fung C., Wong K., Eren H. Modular artificial neural network for prediction of petrophysical properties from well log data. IEEE Transactions on Instrumentation and Measurement 1997, 46(6):1295-1299.
    • (1997) IEEE Transactions on Instrumentation and Measurement , vol.46 , Issue.6 , pp. 1295-1299
    • Fung, C.1    Wong, K.2    Eren, H.3
  • 9
    • 0034774405 scopus 로고    scopus 로고
    • SVM-based detection of moving vehicles for automatic traffic monitoring
    • Proceedings of the IEEE Intelligent Transportation System, Oakland, CA.
    • Gao, D., Zhou, J., Xin, L., 2001. SVM-based detection of moving vehicles for automatic traffic monitoring. In: Proceedings of the IEEE Intelligent Transportation System, Oakland, CA, pp. 745-749.
    • (2001) , pp. 745-749
    • Gao, D.1    Zhou, J.2    Xin, L.3
  • 11
    • 0035394572 scopus 로고    scopus 로고
    • Porosity and permeability prediction from wireline logs using artificial neural networks: a North Sea case study
    • Helle H., Ursin B. Porosity and permeability prediction from wireline logs using artificial neural networks: a North Sea case study. Geophysical Prospecting 2001, 49:431-444.
    • (2001) Geophysical Prospecting , vol.49 , pp. 431-444
    • Helle, H.1    Ursin, B.2
  • 12
    • 0036266856 scopus 로고    scopus 로고
    • Fluid saturation from well logs using committee neural networks
    • Helle H., Bhatt A. Fluid saturation from well logs using committee neural networks. Petroleum Geoscience 2002, 8:109-118.
    • (2002) Petroleum Geoscience , vol.8 , pp. 109-118
    • Helle, H.1    Bhatt, A.2
  • 13
    • 0024880831 scopus 로고
    • Multilayer feedforward networks are universal approximators
    • Hornik K., Stinchcombe M., White H. Multilayer feedforward networks are universal approximators. Neural Networks 1989, 2(5):359-366.
    • (1989) Neural Networks , vol.2 , Issue.5 , pp. 359-366
    • Hornik, K.1    Stinchcombe, M.2    White, H.3
  • 14
    • 0035254822 scopus 로고    scopus 로고
    • An integrated neural-fuzzy-genetic-algorithm using hyper-surface membership functions to predict permeability in petroleum reservoirs
    • Huang Y., Gedeon T.D., Wong P.M. An integrated neural-fuzzy-genetic-algorithm using hyper-surface membership functions to predict permeability in petroleum reservoirs. Engineering Applications of Artificial Intelligence 2001, 14:15-21.
    • (2001) Engineering Applications of Artificial Intelligence , vol.14 , pp. 15-21
    • Huang, Y.1    Gedeon, T.D.2    Wong, P.M.3
  • 15
    • 0030107415 scopus 로고    scopus 로고
    • Permeability prediction with artificial neural network modelling in the Venture gas field, offshore eastern Canada
    • Huang Z., Shimeld J., Williamson M., Katsube J. Permeability prediction with artificial neural network modelling in the Venture gas field, offshore eastern Canada. Geophysics 1996, 61:422-436.
    • (1996) Geophysics , vol.61 , pp. 422-436
    • Huang, Z.1    Shimeld, J.2    Williamson, M.3    Katsube, J.4
  • 16
    • 48749124544 scopus 로고    scopus 로고
    • The application of artificial neural networks with small data sets: an example for analysis of fracture spacing in the Lisburne formation, Northeastern Alaska
    • Kaviani D., Bui T.D., Jensen J.L., Hanks C.L. The application of artificial neural networks with small data sets: an example for analysis of fracture spacing in the Lisburne formation, Northeastern Alaska. SPE Reservoir Evaluation and Engineering 2008, 11(3):598-605.
    • (2008) SPE Reservoir Evaluation and Engineering , vol.11 , Issue.3 , pp. 598-605
    • Kaviani, D.1    Bui, T.D.2    Jensen, J.L.3    Hanks, C.L.4
  • 17
    • 33847059431 scopus 로고    scopus 로고
    • Support vector machines-an introduction
    • Springer-Verlag, Berlin Heidelberg, (Chapter 1), L. Wang (Ed.)
    • Kecman V. Support vector machines-an introduction. Support Vector Machines: Theory and Applications 2005, 1-47. Springer-Verlag, Berlin Heidelberg, (Chapter 1). L. Wang (Ed.).
    • (2005) Support Vector Machines: Theory and Applications , pp. 1-47
    • Kecman, V.1
  • 18
    • 0034825071 scopus 로고    scopus 로고
    • Support vector machine-based text detection in digital video
    • Kim K., Jung K., Park S., Kim H.J. Support vector machine-based text detection in digital video. Pattern Recognition 2001, 34:527-529.
    • (2001) Pattern Recognition , vol.34 , pp. 527-529
    • Kim, K.1    Jung, K.2    Park, S.3    Kim, H.J.4
  • 20
    • 0035783560 scopus 로고    scopus 로고
    • Face recognition using feature optimization and v-support vector machine
    • Proceedings of the IEEE Signal Processing Society Workshop, North Falmouth, MA.
    • Lu, J., Plataniotis, K., Ventesanopoulos, A., 2001. Face recognition using feature optimization and v-support vector machine. In: Proceedings of the IEEE Signal Processing Society Workshop, North Falmouth, MA, vol. 11, pp. 373-382.
    • (2001) , vol.11 , pp. 373-382
    • Lu, J.1    Plataniotis, K.2    Ventesanopoulos, A.3
  • 21
    • 0034842453 scopus 로고    scopus 로고
    • A support vector machines-based rejection technique for speech recognition
    • Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing, Salt Lake City, Utah.
    • Ma, C., Randolph, M., Drish, J., 2001. A support vector machines-based rejection technique for speech recognition. In: Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing, Salt Lake City, Utah, vol. 1, pp. 381-384.
    • (2001) , vol.1 , pp. 381-384
    • Ma, C.1    Randolph, M.2    Drish, J.3
  • 22
    • 0012519645 scopus 로고    scopus 로고
    • Mathworks Matlab User's Guide
    • Statistics Toolbox, Matlab CD-ROM Mathworks, Inc.
    • Mathworks Matlab User's Guide, 2007. Statistics Toolbox, Matlab CD-ROM Mathworks, Inc.
    • (2007)
  • 23
    • 0025536870 scopus 로고
    • Improving the learning speed of 2-layer neural networks by choosing initial values of the adaptive weights
    • Nguyen, D., Widrow, B., 1990. Improving the learning speed of 2-layer neural networks by choosing initial values of the adaptive weights. In: Proceedings of the International Joint Conference on Neural Networks, vol. 3, pp. 21-26.
    • (1990) Proceedings of the International Joint Conference on Neural Networks. , vol.3 , pp. 21-26
    • Nguyen, D.1    Widrow, B.2
  • 24
    • 0029475922 scopus 로고
    • Predicting permeability from porosity using artificial neural networks
    • Rogers S.J., Chen H.C., Kopaska-Merkel D.C., Fang J.H. Predicting permeability from porosity using artificial neural networks. AAPG Bulletin 1995, 79:1786-1797.
    • (1995) AAPG Bulletin , vol.79 , pp. 1786-1797
    • Rogers, S.J.1    Chen, H.C.2    Kopaska-Merkel, D.C.3    Fang, J.H.4
  • 25
    • 67349141656 scopus 로고    scopus 로고
    • DTREG Predictive Modeling Software User's Manual
    • Version 9.1,
    • Sherrod, P.H., 2009. DTREG Predictive Modeling Software User's Manual, Version 9.1, http://www.dtreg.com.
    • (2009)
    • Sherrod, P.H.1
  • 29
    • 0001024505 scopus 로고
    • On the uniform convergence of relative frequencies of events to their probabilities
    • Vapnik V., Chervonenkis A. On the uniform convergence of relative frequencies of events to their probabilities. Theory of Probability and its Applications 1971, 16(2):264-280.
    • (1971) Theory of Probability and its Applications , vol.16 , Issue.2 , pp. 264-280
    • Vapnik, V.1    Chervonenkis, A.2
  • 30
    • 0004272441 scopus 로고
    • Nauka, Moscow, (German Translation: Wapnik W., Tscherwonenkis A., Theorie der Zeichenerkennung, Akademie-Verlag, Berlin, 1979.)
    • Vapnik V., Chervonenkis A. Theory of Pattern Recognition [in Russian] 1974, Nauka, Moscow, (German Translation: Wapnik W., Tscherwonenkis A., Theorie der Zeichenerkennung, Akademie-Verlag, Berlin, 1979.).
    • (1974) Theory of Pattern Recognition [in Russian]
    • Vapnik, V.1    Chervonenkis, A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.