-
1
-
-
77952425587
-
On the capability of support vector machines to classify lithology
-
Al-Anazi A., Gates I.D. On the capability of support vector machines to classify lithology. Natural Resources Research 2010, 19(2):125-139.
-
(2010)
Natural Resources Research
, vol.19
, Issue.2
, pp. 125-139
-
-
Al-Anazi, A.1
Gates, I.D.2
-
2
-
-
77952424965
-
Support vector regression for permeability prediction in a heterogeneous reservoir: a comparative study
-
Al-Anazi A., Gates I.D. Support vector regression for permeability prediction in a heterogeneous reservoir: a comparative study. SPE Reservoir Evaluation and Engineering 2010, 13(3):485-495.
-
(2010)
SPE Reservoir Evaluation and Engineering
, vol.13
, Issue.3
, pp. 485-495
-
-
Al-Anazi, A.1
Gates, I.D.2
-
3
-
-
77955173749
-
A support vector machine algorithm to classify lithofacies and model permeability in heterogeneous reservoirs
-
Al-Anazi A., Gates I.D. A support vector machine algorithm to classify lithofacies and model permeability in heterogeneous reservoirs. Engineering Geology 2010, 114(3-4):267-277.
-
(2010)
Engineering Geology
, vol.114
, Issue.3-4
, pp. 267-277
-
-
Al-Anazi, A.1
Gates, I.D.2
-
4
-
-
77952428938
-
Support vector regression for porosity prediction in a heterogeneous reservoir: a comparative study
-
Al-Anazi A.F., Gates I.D. Support vector regression for porosity prediction in a heterogeneous reservoir: a comparative study. Computers and Geosciences 2010, 36(12):1494-1503.
-
(2010)
Computers and Geosciences
, vol.36
, Issue.12
, pp. 1494-1503
-
-
Al-Anazi, A.F.1
Gates, I.D.2
-
5
-
-
10944265308
-
Selecting of the loss function for robust linear regression
-
Cherkassky V., Ma Y. Selecting of the loss function for robust linear regression. Neural Computation 2004, 1:395-400.
-
(2004)
Neural Computation
, vol.1
, pp. 395-400
-
-
Cherkassky, V.1
Ma, Y.2
-
6
-
-
0003890671
-
-
John Wiley & Sons Inc., Hoboken, New Jersey.
-
Cherkassky V., Mulier F. Learning from Data. Concepts, Theory, and Methods 2007, John Wiley & Sons Inc., Hoboken, New Jersey, 538pp. 2nd ed.
-
(2007)
Learning from Data. Concepts, Theory, and Methods
, pp. 538
-
-
Cherkassky, V.1
Mulier, F.2
-
7
-
-
84951831437
-
Handwriting recognition using local methods for normalization and global methods for recognition
-
Proceedings of Sixth International Conference on Document Analysis and Recognition.
-
Choisy, C., Belaid, A., 2001. Handwriting recognition using local methods for normalization and global methods for recognition. In: Proceedings of Sixth International Conference on Document Analysis and Recognition, pp. 23-27.
-
(2001)
, pp. 23-27
-
-
Choisy, C.1
Belaid, A.2
-
8
-
-
0031348892
-
Modular artificial neural network for prediction of petrophysical properties from well log data
-
Fung C., Wong K., Eren H. Modular artificial neural network for prediction of petrophysical properties from well log data. IEEE Transactions on Instrumentation and Measurement 1997, 46(6):1295-1299.
-
(1997)
IEEE Transactions on Instrumentation and Measurement
, vol.46
, Issue.6
, pp. 1295-1299
-
-
Fung, C.1
Wong, K.2
Eren, H.3
-
9
-
-
0034774405
-
SVM-based detection of moving vehicles for automatic traffic monitoring
-
Proceedings of the IEEE Intelligent Transportation System, Oakland, CA.
-
Gao, D., Zhou, J., Xin, L., 2001. SVM-based detection of moving vehicles for automatic traffic monitoring. In: Proceedings of the IEEE Intelligent Transportation System, Oakland, CA, pp. 745-749.
-
(2001)
, pp. 745-749
-
-
Gao, D.1
Zhou, J.2
Xin, L.3
-
10
-
-
0003684449
-
-
Springer, New York
-
Hastie T., Tibshirani R., Friedman J. The Elements of Statistical Learning: Data Mining, Inference, and Prediction 2001, Springer, New York.
-
(2001)
The Elements of Statistical Learning: Data Mining, Inference, and Prediction
-
-
Hastie, T.1
Tibshirani, R.2
Friedman, J.3
-
11
-
-
0035394572
-
Porosity and permeability prediction from wireline logs using artificial neural networks: a North Sea case study
-
Helle H., Ursin B. Porosity and permeability prediction from wireline logs using artificial neural networks: a North Sea case study. Geophysical Prospecting 2001, 49:431-444.
-
(2001)
Geophysical Prospecting
, vol.49
, pp. 431-444
-
-
Helle, H.1
Ursin, B.2
-
12
-
-
0036266856
-
Fluid saturation from well logs using committee neural networks
-
Helle H., Bhatt A. Fluid saturation from well logs using committee neural networks. Petroleum Geoscience 2002, 8:109-118.
-
(2002)
Petroleum Geoscience
, vol.8
, pp. 109-118
-
-
Helle, H.1
Bhatt, A.2
-
13
-
-
0024880831
-
Multilayer feedforward networks are universal approximators
-
Hornik K., Stinchcombe M., White H. Multilayer feedforward networks are universal approximators. Neural Networks 1989, 2(5):359-366.
-
(1989)
Neural Networks
, vol.2
, Issue.5
, pp. 359-366
-
-
Hornik, K.1
Stinchcombe, M.2
White, H.3
-
14
-
-
0035254822
-
An integrated neural-fuzzy-genetic-algorithm using hyper-surface membership functions to predict permeability in petroleum reservoirs
-
Huang Y., Gedeon T.D., Wong P.M. An integrated neural-fuzzy-genetic-algorithm using hyper-surface membership functions to predict permeability in petroleum reservoirs. Engineering Applications of Artificial Intelligence 2001, 14:15-21.
-
(2001)
Engineering Applications of Artificial Intelligence
, vol.14
, pp. 15-21
-
-
Huang, Y.1
Gedeon, T.D.2
Wong, P.M.3
-
15
-
-
0030107415
-
Permeability prediction with artificial neural network modelling in the Venture gas field, offshore eastern Canada
-
Huang Z., Shimeld J., Williamson M., Katsube J. Permeability prediction with artificial neural network modelling in the Venture gas field, offshore eastern Canada. Geophysics 1996, 61:422-436.
-
(1996)
Geophysics
, vol.61
, pp. 422-436
-
-
Huang, Z.1
Shimeld, J.2
Williamson, M.3
Katsube, J.4
-
16
-
-
48749124544
-
The application of artificial neural networks with small data sets: an example for analysis of fracture spacing in the Lisburne formation, Northeastern Alaska
-
Kaviani D., Bui T.D., Jensen J.L., Hanks C.L. The application of artificial neural networks with small data sets: an example for analysis of fracture spacing in the Lisburne formation, Northeastern Alaska. SPE Reservoir Evaluation and Engineering 2008, 11(3):598-605.
-
(2008)
SPE Reservoir Evaluation and Engineering
, vol.11
, Issue.3
, pp. 598-605
-
-
Kaviani, D.1
Bui, T.D.2
Jensen, J.L.3
Hanks, C.L.4
-
17
-
-
33847059431
-
Support vector machines-an introduction
-
Springer-Verlag, Berlin Heidelberg, (Chapter 1), L. Wang (Ed.)
-
Kecman V. Support vector machines-an introduction. Support Vector Machines: Theory and Applications 2005, 1-47. Springer-Verlag, Berlin Heidelberg, (Chapter 1). L. Wang (Ed.).
-
(2005)
Support Vector Machines: Theory and Applications
, pp. 1-47
-
-
Kecman, V.1
-
18
-
-
0034825071
-
Support vector machine-based text detection in digital video
-
Kim K., Jung K., Park S., Kim H.J. Support vector machine-based text detection in digital video. Pattern Recognition 2001, 34:527-529.
-
(2001)
Pattern Recognition
, vol.34
, pp. 527-529
-
-
Kim, K.1
Jung, K.2
Park, S.3
Kim, H.J.4
-
19
-
-
12444306906
-
Radar target recognition based on support vector machine
-
Li, Z., Weida, Z., Licheng, J., 2000. Radar target recognition based on support vector machine. In: Proceedings of Fifth International Conference on Signal Processing, vol. 3, pp. 1453-1456.
-
(2000)
Proceedings of Fifth International Conference on Signal Processing.
, vol.3
, pp. 1453-1456
-
-
Li, Z.1
Weida, Z.2
Licheng, J.3
-
20
-
-
0035783560
-
Face recognition using feature optimization and v-support vector machine
-
Proceedings of the IEEE Signal Processing Society Workshop, North Falmouth, MA.
-
Lu, J., Plataniotis, K., Ventesanopoulos, A., 2001. Face recognition using feature optimization and v-support vector machine. In: Proceedings of the IEEE Signal Processing Society Workshop, North Falmouth, MA, vol. 11, pp. 373-382.
-
(2001)
, vol.11
, pp. 373-382
-
-
Lu, J.1
Plataniotis, K.2
Ventesanopoulos, A.3
-
21
-
-
0034842453
-
A support vector machines-based rejection technique for speech recognition
-
Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing, Salt Lake City, Utah.
-
Ma, C., Randolph, M., Drish, J., 2001. A support vector machines-based rejection technique for speech recognition. In: Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing, Salt Lake City, Utah, vol. 1, pp. 381-384.
-
(2001)
, vol.1
, pp. 381-384
-
-
Ma, C.1
Randolph, M.2
Drish, J.3
-
22
-
-
0012519645
-
Mathworks Matlab User's Guide
-
Statistics Toolbox, Matlab CD-ROM Mathworks, Inc.
-
Mathworks Matlab User's Guide, 2007. Statistics Toolbox, Matlab CD-ROM Mathworks, Inc.
-
(2007)
-
-
-
23
-
-
0025536870
-
Improving the learning speed of 2-layer neural networks by choosing initial values of the adaptive weights
-
Nguyen, D., Widrow, B., 1990. Improving the learning speed of 2-layer neural networks by choosing initial values of the adaptive weights. In: Proceedings of the International Joint Conference on Neural Networks, vol. 3, pp. 21-26.
-
(1990)
Proceedings of the International Joint Conference on Neural Networks.
, vol.3
, pp. 21-26
-
-
Nguyen, D.1
Widrow, B.2
-
24
-
-
0029475922
-
Predicting permeability from porosity using artificial neural networks
-
Rogers S.J., Chen H.C., Kopaska-Merkel D.C., Fang J.H. Predicting permeability from porosity using artificial neural networks. AAPG Bulletin 1995, 79:1786-1797.
-
(1995)
AAPG Bulletin
, vol.79
, pp. 1786-1797
-
-
Rogers, S.J.1
Chen, H.C.2
Kopaska-Merkel, D.C.3
Fang, J.H.4
-
25
-
-
67349141656
-
DTREG Predictive Modeling Software User's Manual
-
Version 9.1,
-
Sherrod, P.H., 2009. DTREG Predictive Modeling Software User's Manual, Version 9.1, http://www.dtreg.com.
-
(2009)
-
-
Sherrod, P.H.1
-
26
-
-
0037695279
-
-
World Scientific, Singapore
-
Suykens J.A.K., Van Gestel T., Brabanter J., De Moor B., Vandewalle J. Least Squares Support Vector Machines 2002, World Scientific, Singapore.
-
(2002)
Least Squares Support Vector Machines
-
-
Suykens, J.A.K.1
Van Gestel, T.2
Brabanter, J.3
De Moor, B.4
Vandewalle, J.5
-
27
-
-
0035392694
-
Financial time series prediction using least squares support vector machines within the evidence framework
-
Van Gestel T., Suykens J., Baestaens D., Lambrechts A., Lanckriet G., Vandaele B., De Moor B., Vandewalle J. Financial time series prediction using least squares support vector machines within the evidence framework. IEEE Transactions on Neural Networks 2001, 12(4):809-821.
-
(2001)
IEEE Transactions on Neural Networks
, vol.12
, Issue.4
, pp. 809-821
-
-
Van Gestel, T.1
Suykens, J.2
Baestaens, D.3
Lambrechts, A.4
Lanckriet, G.5
Vandaele, B.6
De Moor, B.7
Vandewalle, J.8
-
29
-
-
0001024505
-
On the uniform convergence of relative frequencies of events to their probabilities
-
Vapnik V., Chervonenkis A. On the uniform convergence of relative frequencies of events to their probabilities. Theory of Probability and its Applications 1971, 16(2):264-280.
-
(1971)
Theory of Probability and its Applications
, vol.16
, Issue.2
, pp. 264-280
-
-
Vapnik, V.1
Chervonenkis, A.2
-
30
-
-
0004272441
-
-
Nauka, Moscow, (German Translation: Wapnik W., Tscherwonenkis A., Theorie der Zeichenerkennung, Akademie-Verlag, Berlin, 1979.)
-
Vapnik V., Chervonenkis A. Theory of Pattern Recognition [in Russian] 1974, Nauka, Moscow, (German Translation: Wapnik W., Tscherwonenkis A., Theorie der Zeichenerkennung, Akademie-Verlag, Berlin, 1979.).
-
(1974)
Theory of Pattern Recognition [in Russian]
-
-
Vapnik, V.1
Chervonenkis, A.2
|