메뉴 건너뛰기




Volumn 1, Issue , 2014, Pages 73-81

Local learning for mining outlier subgraphs from network datasets

Author keywords

[No Author keywords available]

Indexed keywords

COMPUTATION THEORY; LINEAR PROGRAMMING; PROBABILITY; SPACE DIVISION MULTIPLE ACCESS; STATISTICS;

EID: 84909636779     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1137/1.9781611973440.9     Document Type: Conference Paper
Times cited : (32)

References (21)
  • 1
    • 79957832478 scopus 로고    scopus 로고
    • Outlier detection in graph streams
    • J C. C. Aggarwal, Y. Zhao, and P. S. Yu. Outlier Detection in Graph Streams. In ICDE, pages 399-409, 2011.
    • (2011) ICDE , pp. 399-409
    • Aggarwal, J.C.C.1    Zhao, Y.2    Yu, P.S.3
  • 2
    • 79956316709 scopus 로고    scopus 로고
    • Oddball: Spotting anomalies in weighted graphs
    • L. Akoglu, M. McGlohon, and C. Faloutsos. Oddball: Spotting anomalies in weighted graphs. In PAKDD, pages 410-421, 2010.
    • (2010) PAKDD , pp. 410-421
    • Akoglu, L.1    McGlohon, M.2    Faloutsos, C.3
  • 3
    • 34548571606 scopus 로고    scopus 로고
    • AutoPart: Parameter-free graph partitioning and outlier detection
    • D. Chakrabarti. AutoPart: Parameter-free Graph Partitioning and Outlier Detection. In PKDD, pages 112-124, 2004.
    • (2004) PKDD , pp. 112-124
    • Chakrabarti, D.1
  • 4
    • 34249753618 scopus 로고
    • Support-vector networks
    • C. Cortes and V. Vapnik. Support-Vector Networks. Machine Learning, 20(3):273-297, 1995.
    • (1995) Machine Learning , vol.20 , Issue.3 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 5
    • 84901687582 scopus 로고    scopus 로고
    • Novel approaches in modelling dynamics of networked surveillance environment
    • P. Dickinson and M. Kraetzl. Novel Approaches in Modelling Dynamics of Networked Surveillance Environment. In Fusion, volume 1, pages 302-309, 2003.
    • (2003) Fusion , vol.1 , pp. 302-309
    • Dickinson, P.1    Kraetzl, M.2
  • 6
    • 84959895493 scopus 로고    scopus 로고
    • Creating subnetworks from transcriptomic data on central nervous system diseases informed by a massive transcriptomic network
    • Jan.
    • Y. Feng, J. A. Syrkin-Nikolau, and E. S. Wurtele. Creating Subnetworks from Transcriptomic Data on Central Nervous System Diseases informed by a Massive Transcriptomic Network. Interdisciplinary Bio Central (IBC), 5(1):1-8, Jan 2013.
    • (2013) Interdisciplinary Bio Central (IBC) , vol.5 , Issue.1 , pp. 1-8
    • Feng, Y.1    Syrkin-Nikolau, J.A.2    Wurtele, E.S.3
  • 7
    • 77956197036 scopus 로고    scopus 로고
    • On community outliers and their efficient detection in information networks
    • J. Gao, F. Liang, W. Fan, C. Wang, Y. Sun, and J. Han. On Community Outliers and their Efficient Detection in Information Networks. In KDD, pages 813-822, 2010.
    • (2010) KDD , pp. 813-822
    • Gao, J.1    Liang, F.2    Fan, W.3    Wang, C.4    Sun, Y.5    Han, J.6
  • 9
    • 84866852738 scopus 로고    scopus 로고
    • Community trend outlier detection using soft temporal pattern mining
    • M. Gupta, J. Gao, Y. Sun, and J. Han. Community Trend Outlier Detection using Soft Temporal Pattern Mining. In ECML PKDD, pages 692-708, 2012.
    • (2012) ECML PKDD , pp. 692-708
    • Gupta, M.1    Gao, J.2    Sun, Y.3    Han, J.4
  • 10
    • 84866005624 scopus 로고    scopus 로고
    • Integrating community matching and outlier detection for mining evolutionary community outliers
    • M. Gupta, J. Gao, Y. Sun, and J. Han. Integrating Community Matching and Outlier Detection for Mining Evolutionary Community Outliers. In KDD, pages 859-867, 2012.
    • (2012) KDD , pp. 859-867
    • Gupta, M.1    Gao, J.2    Sun, Y.3    Han, J.4
  • 11
    • 84893297393 scopus 로고    scopus 로고
    • On detecting association-based clique outliers in heterogeneous information networks
    • M. Gupta, J. Gao, X. Yan, H. Cam, and J. Han. On Detecting Association-Based Clique Outliers in Heterogeneous Information Networks. In ASONAM, 2013.
    • (2013) ASONAM
    • Gupta, M.1    Gao, J.2    Yan, X.3    Cam, H.4    Han, J.5
  • 12
    • 84901754968 scopus 로고    scopus 로고
    • Top-KInteresting subgraph discovery in information networks
    • M. Gupta, J. Gao, X. Yan, H. Cam, and J. Han. Top-KInteresting Subgraph Discovery in Information Networks. In ICDE, 2014.
    • (2014) ICDE
    • Gupta, M.1    Gao, J.2    Yan, X.3    Cam, H.4    Han, J.5
  • 14
    • 12244300520 scopus 로고    scopus 로고
    • Eigenspace-based anomaly detection in computer systems
    • T. Ide and H. Kashima. Eigenspace-based Anomaly Detection in Computer Systems. In KDD, pages 440-449, 2004.
    • (2004) KDD , pp. 440-449
    • Ide, T.1    Kashima, H.2
  • 15
    • 0032131147 scopus 로고    scopus 로고
    • A fast and high quality multilevel scheme for partitioning irregular graphs
    • Dec.
    • G. Karypis and V. Kumar. A Fast and High Quality Multilevel Scheme for Partitioning Irregular Graphs. J. on Sci. Computing, 20(1):359-392, Dec. 1998.
    • (1998) J. on Sci. Computing , vol.20 , Issue.1 , pp. 359-392
    • Karypis, G.1    Kumar, V.2
  • 16
    • 38949173521 scopus 로고    scopus 로고
    • Outlier detection using random walks
    • H. D. K. Moonesignhe and P.-N. Tan. Outlier Detection Using Random Walks. In IC-TAI, pages 532-539, 2006.
    • (2006) IC-TAI , pp. 532-539
    • Moonesignhe, H.D.K.1    Tan, P.-N.2
  • 17
    • 12244268431 scopus 로고    scopus 로고
    • Graph-based anomalv detection
    • C. C. Noble and D. J. Cook. Graph-Based Anomalv Detection. In KDD, pages 631-636, 2003.
    • (2003) KDD , pp. 631-636
    • Noble, C.C.1    Cook, D.J.2
  • 19
    • 84858063639 scopus 로고    scopus 로고
    • On clustering heterogeneous social media objects with outlier links
    • G.-J. Qi, C. C. Aggarwal, and T. S. Huang. On Clustering Heterogeneous Social Media Objects with Outlier Links. In WSDM, pages 553-562, 2012.
    • (2012) WSDM , pp. 553-562
    • Qi, G.-J.1    Aggarwal, C.C.2    Huang, T.S.3
  • 20
    • 34548580783 scopus 로고    scopus 로고
    • Neighborhood formation and anomaly detection in bipartite graphs
    • J. Sun, H. Qu, D. Chakrabarti, and C. Faloutsos. Neighborhood Formation and Anomaly Detection in Bipartite Graphs. In ICDM, pages 418-425, 2005.
    • (2005) ICDM , pp. 418-425
    • Sun, J.1    Qu, H.2    Chakrabarti, D.3    Faloutsos, C.4
  • 21
    • 79959966159 scopus 로고    scopus 로고
    • On graph query optimization in large networks
    • P. Zhao and J. Han. On Graph Query Optimization in Large Networks. PVLDB, 3(1):340-351, 2010.
    • (2010) PVLDB , vol.3 , Issue.1 , pp. 340-351
    • Zhao, P.1    Han, J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.