-
2
-
-
0003102944
-
Maximum likelihood estimation of observer error-rates using the em algorithm
-
A. P. Dawid and A. M. Skene. Maximum Likelihood Estimation of Observer Error-Rates Using the EM Algorithm. Journal of the Royal Statistical Society., 28(1):20-28, 1979.
-
(1979)
Journal of the Royal Statistical Society.
, vol.28
, Issue.1
, pp. 20-28
-
-
Dawid, A.P.1
Skene, A.M.2
-
5
-
-
84897504552
-
Adaptive task assignment for crowdsourced classification
-
C.-J. Ho, S. Jabbari, and J. W. Vaughan. Adaptive task assignment for crowdsourced classification. In ICML, pages 534-542, 2013.
-
ICML
, vol.2013
, pp. 534-542
-
-
Ho, C.-J.1
Jabbari, S.2
Vaughan, J.W.3
-
9
-
-
84856118112
-
Budget-optimal crowdsourcing using low-rank matrix approximations
-
IEEE
-
D. R. Karger, S. Oh, and D. Shah. Budget-optimal crowdsourcing using low-rank matrix approximations. In Communication, Control, and Computing (Allerton), 2011 49th Annual Allerton Conference on, pages 284-291. IEEE, 2011.
-
(2011)
Communication, Control, and Computing (Allerton), 2011 49th Annual Allerton Conference on
, pp. 284-291
-
-
Karger, D.R.1
Oh, S.2
Shah, D.3
-
10
-
-
85162483531
-
Iterative learning for reliable crowdsourcing systems
-
D. R. Karger, S. Oh, and D. Shah. Iterative learning for reliable crowdsourcing systems. In NIPS, pages 1953-1961, 2011.
-
(2011)
NIPS
, pp. 1953-1961
-
-
Karger, D.R.1
Oh, S.2
Shah, D.3
-
11
-
-
84871089459
-
The face of quality in crowdsourcing relevance labels: Demographics, personality and labeling accuracy
-
ACM Press, New York NY
-
G. Kazai, J. Kamps, and N. Milic-Frayling. The face of quality in crowdsourcing relevance labels: Demographics, personality and labeling accuracy. In Proceedings of the 21st ACM Conference on Information and Knowledge Management (CIKM 2012). ACM Press, New York NY, 2012.
-
(2012)
Proceedings of the 21st ACM Conference on Information and Knowledge Management (CIKM 2012)
-
-
Kazai, G.1
Kamps, J.2
Milic-Frayling, N.3
-
12
-
-
84875650055
-
An analysis of human factors and label accuracy in crowdsourcing relevance judgments
-
G. Kazai, J. Kamps, and N. Milic-Frayling. An analysis of human factors and label accuracy in crowdsourcing relevance judgments. Information Retrieval, 16:138-178, 2013.
-
(2013)
Information Retrieval
, vol.16
, pp. 138-178
-
-
Kazai, G.1
Kamps, J.2
Milic-Frayling, N.3
-
13
-
-
84906771152
-
Error rate analysis of labeling by crowdsourcing
-
Atalanta, Georgia, USA.
-
H. Li, B. Yu, and D. Zhou. Error Rate Analysis of Labeling by Crowdsourcing. In ICML Workshop: Machine Learning Meets Crowdsourcing. Atalanta, Georgia, USA., 2013.
-
(2013)
ICML Workshop: Machine Learning Meets Crowdsourcing
-
-
Li, H.1
Yu, B.2
Zhou, D.3
-
15
-
-
84877752474
-
Variational inference for crowdsourcing
-
Q. Liu, J. Peng, and A. Ihler. Variational inference for crowdsourcing. NIPS, 2012.
-
(2012)
NIPS
-
-
Liu, Q.1
Peng, J.2
Ihler, A.3
-
17
-
-
84909645389
-
Adaptive polling for information aggregation
-
T. Pfei?er, X. A. Gao, Y. Chen, A. Mao, and D. G. Rand. Adaptive polling for information aggregation. In AAAI, 2012.
-
(2012)
AAAI
-
-
Pfeier, T.1
Gao, X.A.2
Chen, Y.3
Mao, A.4
Rand, D.G.5
-
18
-
-
77951954464
-
Learning from crowds
-
V. C. Raykar, S. Yu, L. H. Zhao, C. Florin, L. Bogoni, and L. Moy. Learning From Crowds. Journal of Machine Learning Research, 11:1297-1322, 2010.
-
(2010)
Journal of Machine Learning Research
, vol.11
, pp. 1297-1322
-
-
Raykar, V.C.1
Yu, S.2
Zhao, L.H.3
Florin, C.4
Bogoni, L.5
Moy, L.6
-
19
-
-
77953088193
-
Who are the crowdworkers?: Shifting demographics in mechanical turk
-
ACM
-
J. Ross, L. Irani, M. Silberman, A. Zaldivar, and B. Tomlinson. Who are the crowdworkers?: shifting demographics in mechanical turk. In CHI, pages 2863-2872. ACM, 2010.
-
(2010)
CHI
, pp. 2863-2872
-
-
Ross, J.1
Irani, L.2
Silberman, M.3
Zaldivar, A.4
Tomlinson, B.5
-
21
-
-
32944457898
-
Inferring ground truth from subjective labelling of venus images
-
P. Smyth, U. Fayyad, M. Burl, P. Perona, and P. Baldi. Inferring Ground Truth from Subjective Labelling of Venus Images. In NIPS, 1995.
-
(1995)
NIPS
-
-
Smyth, P.1
Fayyad, U.2
Burl, M.3
Perona, P.4
Baldi, P.5
-
22
-
-
80053360508
-
Cheap and fast - But is it good ? Evaluating non-expert annotations for natural language tasks
-
R. Snow, B. O. Connor, D. Jurafsky, A. Y. Ng, D. Labs, and C. St. Cheap and Fast - But is it Good ? Evaluating Non-Expert Annotations for Natural Language Tasks. EMNLP, 2008.
-
(2008)
EMNLP
-
-
Snow, R.1
Connor, B.O.2
Jurafsky, D.3
Ng, A.Y.4
Labs, D.5
St, C.6
-
25
-
-
77951951247
-
Whose vote should count more : Optimal integration of labels from labelers of unknown expertise
-
J. Whitehill, P. Ruvolo, T. Wu, J. Bergsma, and J. Movellan. Whose Vote Should Count More : Optimal Integration of Labels from Labelers of Unknown Expertise. In NIPS, pages 2035-2043, 2009.
-
(2009)
NIPS
, pp. 2035-2043
-
-
Whitehill, J.1
Ruvolo, P.2
Wu, T.3
Bergsma, J.4
Movellan, J.5
-
26
-
-
80053455236
-
Active learning from crowds
-
Y. Yan, G. M. Fung, R. Rosales, and J. G. Dy. Active learning from crowds. In ICML, pages 1161-1168, 2011.
-
(2011)
ICML
, pp. 1161-1168
-
-
Yan, Y.1
Fung, G.M.2
Rosales, R.3
Dy, J.G.4
-
27
-
-
84877729010
-
Learning from the wisdom of crowds by minimax entropy
-
D. Zhou, J. Platt, S. Basu, and Y. Mao. Learning from the Wisdom of Crowds by Minimax Entropy. In NIPS, 2012.
-
(2012)
NIPS
-
-
Zhou, D.1
Platt, J.2
Basu, S.3
Mao, Y.4
|