메뉴 건너뛰기




Volumn 42, Issue , 2014, Pages 155-158

A system to improve continuity of care in heart failure patients

Author keywords

Artificial intelligence; Automatic diagnosis; Chronic care model; Heart failure; Telecare

Indexed keywords

ARTIFICIAL HEART; ARTIFICIAL INTELLIGENCE; CARDIOLOGY; DIAGNOSIS; HEART; INFORMATION SCIENCE; PHYSIOLOGICAL MODELS; REMOTE PATIENT MONITORING;

EID: 84909587493     PISSN: 16800737     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1007/978-3-319-03005-0_40     Document Type: Conference Paper
Times cited : (2)

References (21)
  • 3
    • 77956057795 scopus 로고    scopus 로고
    • Dual-Frequency Active RFID Solution for Tracking Patients in a Children’s Hospital. Design Method, Test Procedure, Risk Analysis, and Technical Solution
    • Sep
    • G. Biffi Gentili, F. Dori, and E. Iadanza, “Dual-Frequency Active RFID Solution for Tracking Patients in a Children’s Hospital. Design Method, Test Procedure, Risk Analysis, and Technical Solution,” Proceedings of the IEEE, vol. 98, no. 9, pp. 1656-1662, Sep. 2010.
    • (2010) Proceedings of the IEEE , vol.98 , Issue.9 , pp. 1656-1662
    • Gentili, B.G.1    Dori, F.2    Iadanza, E.3
  • 7
    • 12844281204 scopus 로고    scopus 로고
    • Risk stratification for in-hospital mortality in acutely decompensated heart failure: Classification and regression tree analysis. (ADHERE)
    • Feb
    • G. C. Fonarow, K. F. Adams, W. T. Abraham, C. W. Yancy, and W. J. Boscardin, “Risk stratification for in-hospital mortality in acutely decompensated heart failure: classification and regression tree analysis. (ADHERE),” JAMA, vol. 293, no. 5, pp. 572-80, Feb. 2005.
    • (2005) JAMA , vol.293 , Issue.5 , pp. 572-580
    • Fonarow, G.C.1    Adams, K.F.2    Abraham, W.T.3    Yancy, C.W.4    Boscardin, W.J.5
  • 8
    • 0344420330 scopus 로고    scopus 로고
    • Hospitalized for Heart Failure Derivation and Validation of a Clinical Model
    • D. S. Lee, P. C. Austin, J. L. Rouleau, P. P. Liu, and D. Naimark, “Hospitalized for Heart Failure Derivation and Validation of a Clinical Model,” Hospitals, vol. 290, no. 19, pp. 2581-2587, 2003.
    • (2003) Hospitals , vol.290 , Issue.19 , pp. 2581-2587
    • Lee, D.S.1    Austin, P.C.2    Rouleau, J.L.3    Liu, P.P.4    Naimark, D.5
  • 10
    • 34249753618 scopus 로고
    • Support-vector networks
    • Sep
    • C. Cortes and V. Vapnik, “Support-vector networks,” Machine Learning, vol. 20, no. 3, pp. 273-297, Sep. 1995.
    • (1995) Machine Learning , vol.20 , Issue.3 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 12
    • 0003802343 scopus 로고    scopus 로고
    • Monterey, CA: Wadsworth & Brooks/Cole Advanced Books & Software
    • L. Breiman et al, “Classification and regression trees.,” Monterey, CA: Wadsworth & Brooks/Cole Advanced Books & Software.
    • Classification and regression trees
    • Breiman, L.1
  • 13
    • 0035478854 scopus 로고    scopus 로고
    • Random Forests
    • L. Breiman, “Random Forests,” Machine Learning, vol. 45, no. 1, pp. 5-32, 2001.
    • (2001) Machine Learning , vol.45 , Issue.1 , pp. 5-32
    • Breiman, L.1
  • 14
    • 84886524376 scopus 로고    scopus 로고
    • Random Forest For Automatic Assessment Of Heart Failure Severity In A Telemonitoring Scenario
    • G. Guidi, M. C. Pettenati, R. Miniati, and E. Iadanza, “Random Forest For Automatic Assessment Of Heart Failure Severity In A Telemonitoring Scenario,” EMBC2013, pp. 3230-3233, ISBN: 978-1-4577-0216-7/13.
    • EMBC2013 , pp. 3230-3233
    • Guidi, G.1    Pettenati, M.C.2    Miniati, R.3    Iadanza, E.4
  • 15
    • 84884893460 scopus 로고    scopus 로고
    • Classification Tree for Risk Assessment in Patients Suffering From Congestive Heart Failure via Long-Term Heart Rate Variability
    • “Melillo P, De Luca N, Bracale M, Pecchia L (2013) Classification Tree for Risk Assessment in Patients Suffering From Congestive Heart Failure via Long-Term Heart Rate Variability. Biomedical and Health Informatics, IEEE Journal of PP (99): 1-1. doi: 10. 1109.”
    • (2013) Biomedical and Health Informatics, IEEE Journal of PP , Issue.99 , pp. 1
    • Melillo, P.1    De Luca, N.2    Bracale, M.3    Pecchia, L.4
  • 16
    • 84927601550 scopus 로고    scopus 로고
    • “http://www. evolvoweb. it/default. asp?iId=GJIJGH.”.
  • 17
    • 65649138430 scopus 로고    scopus 로고
    • A systematic analysis of performance measures for classification tasks
    • Jul
    • M. Sokolova and G. Lapalme, “A systematic analysis of performance measures for classification tasks,” Information Processing & Management, vol. 45, no. 4, pp. 427-437, Jul. 2009.
    • (2009) Information Processing & Management , vol.45 , Issue.4 , pp. 427-437
    • Sokolova, M.1    Lapalme, G.2
  • 18
    • 84891339046 scopus 로고    scopus 로고
    • Performance Assessment of a Clinical Decision Support System for analysis of Heart Failure
    • G. Guidi, P. Melillo, M. Pettenati, M. Milli, and E. Iadanza, “Performance Assessment of a Clinical Decision Support System for analysis of Heart Failure”, IFMBE Proceedings, Vol. 41, 2014, pp. 1899-1902.
    • (2014) IFMBE Proceedings , vol.41 , pp. 1899-1902
    • Guidi, G.1    Melillo, P.2    Pettenati, M.3    Milli, M.4    Iadanza, E.5
  • 21
    • 84891306962 scopus 로고    scopus 로고
    • A Tool For Patient Data Recovering Aimed To Machine Learning Supervised Training
    • G. Guidi, M. C. Pettenati, M. Milli, and E. Iadanza, “A Tool For Patient Data Recovering Aimed To Machine Learning Supervised Training”, IFMBE Proceedings, Vol. 41, 2014, pp. 1899-1902.
    • (2014) IFMBE Proceedings , vol.41 , pp. 1899-1902
    • Guidi, G.1    Pettenati, M.C.2    Milli, M.3    Iadanza, E.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.