메뉴 건너뛰기




Volumn , Issue , 2013, Pages 351-354

Recommendation opportunities: Improving item prediction using weighted percentile methods in collaborative filtering systems

Author keywords

Collaborative filtering; Item accuracy; Recommendations; Recommender systems; Weighted percentiles

Indexed keywords

COLLABORATIVE FILTERING SYSTEMS; EMPIRICAL STUDIES; ITEM ACCURACY; PERFORMANCE MEASURE; PREDICTION ACCURACY; RATING ESTIMATION; RECOMMENDATIONS; WEIGHTED PERCENTILES;

EID: 84887577194     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/2507157.2507229     Document Type: Conference Paper
Times cited : (18)

References (23)
  • 1
    • 84887602753 scopus 로고    scopus 로고
    • Beyond rating prediction accuracy: On new perspectives in recommender systems
    • ACM
    • P. Adamopoulos. Beyond Rating Prediction Accuracy: On New Perspectives in Recommender Systems. In Proceedings of RecSys '13. ACM, 2013.
    • (2013) Proceedings of RecSys '13
    • Adamopoulos, P.1
  • 2
    • 84940344047 scopus 로고    scopus 로고
    • What makes a great MOOC? An interdisciplinary analysis of online course student retention
    • P. Adamopoulos. What Makes a Great MOOC? An Interdisciplinary Analysis of Online Course Student Retention. In Proceedings of ICIS, 2013.
    • (2013) Proceedings of ICIS
    • Adamopoulos, P.1
  • 3
    • 84887600017 scopus 로고    scopus 로고
    • On unexpectedness in recommender systems: Or how to expect the unexpected
    • ACM
    • P. Adamopoulos and A. Tuzhilin. On Unexpectedness in Recommender Systems: Or How to Expect the Unexpected. In DiveRS 2011, RecSys '11. ACM, 2011.
    • (2011) DiveRS 2011 RecSys '11
    • Adamopoulos, P.1    Tuzhilin, A.2
  • 4
    • 84887591609 scopus 로고    scopus 로고
    • On unexpectedness in recommender systems: Or how to better expect the unexpected
    • New York University
    • P. Adamopoulos and A. Tuzhilin. On Unexpectedness in Recommender Systems: Or How to Better Expect the Unexpected. Working Paper: CBA-13-03, New York University, 2013. http://hdl.handle.net/2451/31801.
    • (2013) Working Paper:CBA-13-03
    • Adamopoulos, P.1    Tuzhilin, A.2
  • 5
    • 84859702336 scopus 로고    scopus 로고
    • Improving aggregate recommendation diversity using ranking-based techniques
    • G. Adomavicius and Y. Kwon. Improving aggregate recommendation diversity using ranking-based techniques. IEEE Trans. on Knowl. and Data Eng., 24(5):896 -911, 2012.
    • (2012) IEEE Trans. on Knowl. and Data Eng , vol.24 , Issue.5 , pp. 896-911
    • Adomavicius, G.1    Kwon, Y.2
  • 6
    • 20844435854 scopus 로고    scopus 로고
    • Toward the next generation of recommender systems: A Survey of the state-of-the-art and possible extensions
    • June
    • G. Adomavicius and A. Tuzhilin. Toward the next generation of Recommender Systems: A Survey of the state-of-the-art and possible extensions. IEEE Trans. on Knowl. and Data Eng., 17(6):734-749, June 2005.
    • (2005) IEEE Trans. on Knowl. and Data Eng , vol.17 , Issue.6 , pp. 734-749
    • Adomavicius, G.1    Tuzhilin, A.2
  • 7
    • 0036959356 scopus 로고    scopus 로고
    • Hybrid recommender systems: Survey and experiments
    • R. Burke. Hybrid recommender systems: Survey and experiments. User Model. User-Adapt. Interact., 12(4), 2002.
    • (2002) User Model. User-Adapt. Interact , vol.12 , pp. 4
    • Burke, R.1
  • 9
    • 78649970493 scopus 로고    scopus 로고
    • Beyond accuracy: Evaluating recommender systems by coverage and serendipity
    • ACM
    • M. Ge, C. Delgado-Battenfeld, and D. Jannach. Beyond accuracy: evaluating recommender systems by coverage and serendipity. In Proceedings of RecSys '10. ACM, 2010.
    • (2010) Proceedings of RecSys '10
    • Ge, M.1    Delgado-Battenfeld, C.2    Jannach, D.3
  • 10
    • 84887598890 scopus 로고    scopus 로고
    • gmisclib, Scientific Library, 2013. http://kochanski.org/gpk/code/ speechresearch/gmisclib/.
    • (2013) Scientific Library
  • 11
    • 84976668719 scopus 로고
    • Using collaborative filtering to weave an information tapestry
    • D. Goldberg, D. Nichols, B. M. Oki, and D. Terry. Using collaborative filtering to weave an information tapestry. Communications of the ACM, 35(12):61-70, 1992.
    • (1992) Communications of the ACM , vol.35 , Issue.12 , pp. 61-70
    • Goldberg, D.1    Nichols, D.2    Oki, B.M.3    Terry, D.4
  • 12
    • 3042829247 scopus 로고    scopus 로고
    • An empirical analysis of design choices in neighborhood-based collaborative filtering algorithms
    • J. Herlocker, J. A. Konstan, and J. Riedl. An empirical analysis of design choices in neighborhood-based collaborative filtering algorithms. Information retrieval, 5(4):287-310, 2002.
    • (2002) Information Retrieval , vol.5 , Issue.4 , pp. 287-310
    • Herlocker, J.1    Konstan, J.A.2    Riedl, J.3
  • 13
    • 84887591867 scopus 로고    scopus 로고
    • What recommenders recommend-an analysis of accuracy, popularity, and sales diversity effects
    • Springer
    • D. Jannach, L. Lerche, F. Gedikli, and G. Bonnin. What recommenders recommend-an analysis of accuracy, popularity, and sales diversity effects. In UMAP '13. Springer, 2013.
    • (2013) UMAP '13
    • Jannach, D.1    Lerche, L.2    Gedikli, F.3    Bonnin, G.4
  • 15
    • 8644230345 scopus 로고    scopus 로고
    • An automatic weighting scheme for collaborative filtering
    • R. Jin, J. Y. Chai, and L. Si. An automatic weighting scheme for collaborative filtering. In Proceedings of SIGIR '04, 2004.
    • (2004) Proceedings of SIGIR '04
    • Jin, R.1    Chai, J.Y.2    Si, L.3
  • 16
  • 18
    • 36849052574 scopus 로고    scopus 로고
    • Analytics-driven solutions for customer targeting and sales-force allocation
    • R. Lawrence, C. Perlich, S. Rosset, J. Arroyo, Callahan, et al. Analytics-driven solutions for customer targeting and sales-force allocation. IBM Systems Journal, 46(4), 2007.
    • (2007) IBM Systems Journal , vol.46 , pp. 4
    • Lawrence, R.1    Perlich, C.2    Rosset, S.3    Arroyo Callahan, J.4
  • 21
    • 0018632276 scopus 로고
    • User modeling via stereotypes
    • E. Rich. User modeling via stereotypes. Cognitive science, 3(4):329-354, 1979.
    • (1979) Cognitive Science , vol.3 , Issue.4 , pp. 329-354
    • Rich, E.1
  • 22
    • 77951128611 scopus 로고    scopus 로고
    • Improved neighborhood-based algorithms for large-scale recommender systems
    • ACM
    • A. Töscher, M. Jahrer, and R. Legenstein. Improved neighborhood-based algorithms for large-scale recommender systems. In Proceedings of Netflix '08. ACM, 2008.
    • (2008) Proceedings of Netflix '08
    • Töscher, A.1    Jahrer, M.2    Legenstein, R.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.