-
1
-
-
84894565195
-
Self-consumption: the interplay of autophagy and apoptosis
-
Marino G., et al. Self-consumption: the interplay of autophagy and apoptosis. Nat. Rev. Mol. Cell Biol. 2014, 15:81-94.
-
(2014)
Nat. Rev. Mol. Cell Biol.
, vol.15
, pp. 81-94
-
-
Marino, G.1
-
2
-
-
42449114966
-
Transcriptional control of human p53-regulated genes
-
Riley T., et al. Transcriptional control of human p53-regulated genes. Nat. Rev. Mol. Cell Biol. 2008, 9:402-412.
-
(2008)
Nat. Rev. Mol. Cell Biol.
, vol.9
, pp. 402-412
-
-
Riley, T.1
-
3
-
-
84872067228
-
DAPK plays an important role in panobinostat-induced autophagy and commits cells to apoptosis under autophagy deficient conditions
-
Gandesiri M., et al. DAPK plays an important role in panobinostat-induced autophagy and commits cells to apoptosis under autophagy deficient conditions. Apoptosis 2012, 17:1300-1315.
-
(2012)
Apoptosis
, vol.17
, pp. 1300-1315
-
-
Gandesiri, M.1
-
4
-
-
77957654940
-
Autophagic degradation of active caspase-8: a crosstalk mechanism between autophagy and apoptosis
-
Hou W., et al. Autophagic degradation of active caspase-8: a crosstalk mechanism between autophagy and apoptosis. Autophagy 2010, 6:891-900.
-
(2010)
Autophagy
, vol.6
, pp. 891-900
-
-
Hou, W.1
-
5
-
-
84891303438
-
Autophagy variation within a cell population determines cell fate through selective degradation of Fap-1
-
Gump J.M., et al. Autophagy variation within a cell population determines cell fate through selective degradation of Fap-1. Nat. Cell Biol. 2014, 16:47-54.
-
(2014)
Nat. Cell Biol.
, vol.16
, pp. 47-54
-
-
Gump, J.M.1
-
6
-
-
78649636176
-
Caspase-mediated cleavage of Beclin-1 inactivates Beclin-1-induced autophagy and enhances apoptosis by promoting the release of proapoptotic factors from mitochondria
-
Wirawan E., et al. Caspase-mediated cleavage of Beclin-1 inactivates Beclin-1-induced autophagy and enhances apoptosis by promoting the release of proapoptotic factors from mitochondria. Cell Death Dis. 2010, 1:e18.
-
(2010)
Cell Death Dis.
, vol.1
, pp. e18
-
-
Wirawan, E.1
-
7
-
-
33749162486
-
Calpain-mediated cleavage of Atg5 switches autophagy to apoptosis
-
Yousefi S., et al. Calpain-mediated cleavage of Atg5 switches autophagy to apoptosis. Nat. Cell Biol. 2006, 8:1124-1132.
-
(2006)
Nat. Cell Biol.
, vol.8
, pp. 1124-1132
-
-
Yousefi, S.1
-
8
-
-
33847404337
-
Autophagy gene-dependent clearance of apoptotic cells during embryonic development
-
Qu X., et al. Autophagy gene-dependent clearance of apoptotic cells during embryonic development. Cell 2007, 128:931-946.
-
(2007)
Cell
, vol.128
, pp. 931-946
-
-
Qu, X.1
-
9
-
-
36849088609
-
Growth arrest and autophagy are required for salivary gland cell degradation in Drosophila
-
Berry D.L., Baehrecke E.H. Growth arrest and autophagy are required for salivary gland cell degradation in Drosophila. Cell 2007, 131:1137-1148.
-
(2007)
Cell
, vol.131
, pp. 1137-1148
-
-
Berry, D.L.1
Baehrecke, E.H.2
-
10
-
-
84856431622
-
The end of autophagic cell death?
-
Shen S., et al. The end of autophagic cell death?. Autophagy 2012, 8:1-3.
-
(2012)
Autophagy
, vol.8
, pp. 1-3
-
-
Shen, S.1
-
11
-
-
79960210750
-
Programmed cell death in the plant immune system
-
Coll N.S., et al. Programmed cell death in the plant immune system. Cell Death Differ. 2011, 18:1247-1256.
-
(2011)
Cell Death Differ.
, vol.18
, pp. 1247-1256
-
-
Coll, N.S.1
-
12
-
-
79960205826
-
Morphological classification of plant cell deaths
-
van Doorn W.G., et al. Morphological classification of plant cell deaths. Cell Death Differ. 2011, 18:1241-1246.
-
(2011)
Cell Death Differ.
, vol.18
, pp. 1241-1246
-
-
van Doorn, W.G.1
-
13
-
-
84865859612
-
Autophagy: pathways for self-eating in plant cells
-
Liu Y., Bassham D.C. Autophagy: pathways for self-eating in plant cells. Annu. Rev. Plant Biol. 2012, 63:215-237.
-
(2012)
Annu. Rev. Plant Biol.
, vol.63
, pp. 215-237
-
-
Liu, Y.1
Bassham, D.C.2
-
14
-
-
0015651959
-
Correlations in differentiation of protophloem sieve elements of Allium cepa root
-
Esau K., Gill R.H. Correlations in differentiation of protophloem sieve elements of Allium cepa root. J. Ultrastruct. Res. 1973, 44:310-328.
-
(1973)
J. Ultrastruct. Res.
, vol.44
, pp. 310-328
-
-
Esau, K.1
Gill, R.H.2
-
15
-
-
0000269734
-
Protein bodies of mung bean cotyledons as autophagic organelles
-
Van der Wilden W., et al. Protein bodies of mung bean cotyledons as autophagic organelles. Proc. Natl. Acad. Sci. U.S.A. 1980, 77:428-432.
-
(1980)
Proc. Natl. Acad. Sci. U.S.A.
, vol.77
, pp. 428-432
-
-
Van der Wilden, W.1
-
17
-
-
0002773832
-
Plastolysomes - plastids involved in autolysis of embryo-suspensor in Phaseolus
-
Nagl W. Plastolysomes - plastids involved in autolysis of embryo-suspensor in Phaseolus. Z. Pflanzenphysiol. 1977, 85:45-51.
-
(1977)
Z. Pflanzenphysiol.
, vol.85
, pp. 45-51
-
-
Nagl, W.1
-
18
-
-
85012759413
-
Ultrastructural and developmental aspects of autolysis in embryo-suspensors
-
Nagl W. Ultrastructural and developmental aspects of autolysis in embryo-suspensors. Ber. Deut. Bot. Ges. 1976, 89:301-311.
-
(1976)
Ber. Deut. Bot. Ges.
, vol.89
, pp. 301-311
-
-
Nagl, W.1
-
19
-
-
0002371680
-
Vacuolar localization of proteases and degradation of chloroplasts in mesophyll protoplasts from senescing primary wheat leaves
-
Wittenbach V.A., et al. Vacuolar localization of proteases and degradation of chloroplasts in mesophyll protoplasts from senescing primary wheat leaves. Plant Physiol. 1982, 69:98-102.
-
(1982)
Plant Physiol.
, vol.69
, pp. 98-102
-
-
Wittenbach, V.A.1
-
20
-
-
55549117167
-
Mobilization of rubisco and stroma-localized fluorescent proteins of chloroplasts to the vacuole by an ATG gene-dependent autophagic process
-
Ishida H., et al. Mobilization of rubisco and stroma-localized fluorescent proteins of chloroplasts to the vacuole by an ATG gene-dependent autophagic process. Plant Physiol. 2008, 148:142-155.
-
(2008)
Plant Physiol.
, vol.148
, pp. 142-155
-
-
Ishida, H.1
-
21
-
-
60249083823
-
Autophagy plays a role in chloroplast degradation during senescence in individually darkened leaves
-
Wada S., et al. Autophagy plays a role in chloroplast degradation during senescence in individually darkened leaves. Plant Physiol. 2009, 149:885-893.
-
(2009)
Plant Physiol.
, vol.149
, pp. 885-893
-
-
Wada, S.1
-
22
-
-
0001766209
-
Lysosomal concept for plant pathology
-
Wilson C.L. Lysosomal concept for plant pathology. Annu. Rev. Phytopathol. 1973, 11:247-272.
-
(1973)
Annu. Rev. Phytopathol.
, vol.11
, pp. 247-272
-
-
Wilson, C.L.1
-
23
-
-
79960222617
-
Role of autophagy in disease resistance and hypersensitive response-associated cell death
-
Hofius D., et al. Role of autophagy in disease resistance and hypersensitive response-associated cell death. Cell Death Differ. 2011, 18:1257-1262.
-
(2011)
Cell Death Differ.
, vol.18
, pp. 1257-1262
-
-
Hofius, D.1
-
24
-
-
79959971427
-
What can plant autophagy do for an innate immune response?
-
Hayward A.P., Dinesh-Kumar S.P. What can plant autophagy do for an innate immune response?. Annu. Rev. Phytopathol. 2011, 49:557-576.
-
(2011)
Annu. Rev. Phytopathol.
, vol.49
, pp. 557-576
-
-
Hayward, A.P.1
Dinesh-Kumar, S.P.2
-
25
-
-
19344368318
-
Autophagy regulates programmed cell death during the plant innate immune response
-
Liu Y., et al. Autophagy regulates programmed cell death during the plant innate immune response. Cell 2005, 121:567-577.
-
(2005)
Cell
, vol.121
, pp. 567-577
-
-
Liu, Y.1
-
26
-
-
38049001895
-
Arabidopsis ATG6 is required to limit the pathogen-associated cell death response
-
Patel S., Dinesh-Kumar S.P. Arabidopsis ATG6 is required to limit the pathogen-associated cell death response. Autophagy 2008, 4:20-27.
-
(2008)
Autophagy
, vol.4
, pp. 20-27
-
-
Patel, S.1
Dinesh-Kumar, S.P.2
-
27
-
-
70849127320
-
Autophagy negatively regulates cell death by controlling NPR1-dependent salicylic acid signaling during senescence and the innate immune response in Arabidopsis
-
Yoshimoto K., et al. Autophagy negatively regulates cell death by controlling NPR1-dependent salicylic acid signaling during senescence and the innate immune response in Arabidopsis. Plant Cell 2009, 21:2914-2927.
-
(2009)
Plant Cell
, vol.21
, pp. 2914-2927
-
-
Yoshimoto, K.1
-
28
-
-
79959978116
-
Autophagy differentially controls plant basal immunity to biotrophic and necrotrophic pathogens
-
Lenz H.D., et al. Autophagy differentially controls plant basal immunity to biotrophic and necrotrophic pathogens. Plant J. 2011, 66:818-830.
-
(2011)
Plant J.
, vol.66
, pp. 818-830
-
-
Lenz, H.D.1
-
29
-
-
79958199637
-
A critical role of autophagy in plant resistance to necrotrophic fungal pathogens
-
Lai Z., et al. A critical role of autophagy in plant resistance to necrotrophic fungal pathogens. Plant J. 2011, 66:953-968.
-
(2011)
Plant J.
, vol.66
, pp. 953-968
-
-
Lai, Z.1
-
30
-
-
65549157489
-
Autophagic components contribute to hypersensitive cell death in Arabidopsis
-
Hofius D., et al. Autophagic components contribute to hypersensitive cell death in Arabidopsis. Cell 2009, 137:773-783.
-
(2009)
Cell
, vol.137
, pp. 773-783
-
-
Hofius, D.1
-
31
-
-
33846378524
-
Degradation of oxidized proteins by autophagy during oxidative stress in Arabidopsis
-
Xiong Y., et al. Degradation of oxidized proteins by autophagy during oxidative stress in Arabidopsis. Plant Physiol. 2007, 143:291-299.
-
(2007)
Plant Physiol.
, vol.143
, pp. 291-299
-
-
Xiong, Y.1
-
32
-
-
84863091497
-
The Arabidopsis NPR1 protein is a receptor for the plant defense hormone salicylic acid
-
Wu Y., et al. The Arabidopsis NPR1 protein is a receptor for the plant defense hormone salicylic acid. Cell Rep. 2012, 1:639-647.
-
(2012)
Cell Rep.
, vol.1
, pp. 639-647
-
-
Wu, Y.1
-
33
-
-
84862298224
-
NPR3 and NPR4 are receptors for the immune signal salicylic acid in plants
-
Fu Z.Q., et al. NPR3 and NPR4 are receptors for the immune signal salicylic acid in plants. Nature 2012, 486:228-232.
-
(2012)
Nature
, vol.486
, pp. 228-232
-
-
Fu, Z.Q.1
-
34
-
-
0034754848
-
A role for salicylic acid and NPR1 in regulating cell growth in Arabidopsis
-
Vanacker H., et al. A role for salicylic acid and NPR1 in regulating cell growth in Arabidopsis. Plant J. 2001, 28:209-216.
-
(2001)
Plant J.
, vol.28
, pp. 209-216
-
-
Vanacker, H.1
-
35
-
-
84869061242
-
Salicylic acid binds NPR3 and NPR4 to regulate NPR1-dependent defense responses
-
Moreau M., et al. Salicylic acid binds NPR3 and NPR4 to regulate NPR1-dependent defense responses. Cell Res. 2012, 22:1631-1633.
-
(2012)
Cell Res.
, vol.22
, pp. 1631-1633
-
-
Moreau, M.1
-
36
-
-
84871899675
-
Degradation of the endoplasmic reticulum by autophagy during endoplasmic reticulum stress in Arabidopsis
-
Liu Y., et al. Degradation of the endoplasmic reticulum by autophagy during endoplasmic reticulum stress in Arabidopsis. Plant Cell 2012, 24:4635-4651.
-
(2012)
Plant Cell
, vol.24
, pp. 4635-4651
-
-
Liu, Y.1
-
37
-
-
18644369120
-
Induction of protein secretory pathway is required for systemic acquired resistance
-
Wang D., et al. Induction of protein secretory pathway is required for systemic acquired resistance. Science 2005, 308:1036-1040.
-
(2005)
Science
, vol.308
, pp. 1036-1040
-
-
Wang, D.1
-
38
-
-
84891507370
-
Catalase and NO CATALASE ACTIVITY1 promote autophagy-dependent cell death in Arabidopsis
-
Hackenberg T., et al. Catalase and NO CATALASE ACTIVITY1 promote autophagy-dependent cell death in Arabidopsis. Plant Cell 2013, 25:4616-4626.
-
(2013)
Plant Cell
, vol.25
, pp. 4616-4626
-
-
Hackenberg, T.1
-
39
-
-
84896964529
-
Signaling unmasked: autophagy and catalase promote programmed cell death
-
Petersen M., et al. Signaling unmasked: autophagy and catalase promote programmed cell death. Autophagy 2014, 10:520-521.
-
(2014)
Autophagy
, vol.10
, pp. 520-521
-
-
Petersen, M.1
-
40
-
-
77955704591
-
Peroxisomal hydrogen peroxide is coupled to biotic defense responses by ISOCHORISMATE SYNTHASE1 in a daylength-related manner
-
Chaouch S., et al. Peroxisomal hydrogen peroxide is coupled to biotic defense responses by ISOCHORISMATE SYNTHASE1 in a daylength-related manner. Plant Physiol. 2010, 153:1692-1705.
-
(2010)
Plant Physiol.
, vol.153
, pp. 1692-1705
-
-
Chaouch, S.1
-
41
-
-
84875738550
-
The Rab GTPase RabG3b positively regulates autophagy and immunity-associated hypersensitive cell death in Arabidopsis
-
Kwon S.I., et al. The Rab GTPase RabG3b positively regulates autophagy and immunity-associated hypersensitive cell death in Arabidopsis. Plant Physiol. 2013, 161:1722-1736.
-
(2013)
Plant Physiol.
, vol.161
, pp. 1722-1736
-
-
Kwon, S.I.1
-
42
-
-
77957234857
-
The Rab GTPase RabG3b functions in autophagy and contributes to tracheary element differentiation in Arabidopsis
-
Kwon S.I., et al. The Rab GTPase RabG3b functions in autophagy and contributes to tracheary element differentiation in Arabidopsis. Plant J. 2010, 64:151-164.
-
(2010)
Plant J.
, vol.64
, pp. 151-164
-
-
Kwon, S.I.1
-
43
-
-
0034773645
-
Regulation and execution of programmed cell death in response to pathogens, stress and developmental cues
-
Beers E.P., McDowell J.M. Regulation and execution of programmed cell death in response to pathogens, stress and developmental cues. Curr. Opin. Plant Biol. 2001, 4:561-567.
-
(2001)
Curr. Opin. Plant Biol.
, vol.4
, pp. 561-567
-
-
Beers, E.P.1
McDowell, J.M.2
-
44
-
-
26444534441
-
Programmed cell death in plant embryogenesis
-
Bozhkov P.V., et al. Programmed cell death in plant embryogenesis. Curr. Top. Dev. Biol. 2005, 67:135-179.
-
(2005)
Curr. Top. Dev. Biol.
, vol.67
, pp. 135-179
-
-
Bozhkov, P.V.1
-
45
-
-
43149090294
-
The hypersensitive response; the centenary is upon us but how much do we know?
-
Mur L.A., et al. The hypersensitive response; the centenary is upon us but how much do we know?. J. Exp. Bot. 2008, 59:501-520.
-
(2008)
J. Exp. Bot.
, vol.59
, pp. 501-520
-
-
Mur, L.A.1
-
46
-
-
78649254014
-
Role of Arabidopsis RabG3b and autophagy in tracheary element differentiation
-
Kwon S.I., et al. Role of Arabidopsis RabG3b and autophagy in tracheary element differentiation. Autophagy 2010, 6:1187-1189.
-
(2010)
Autophagy
, vol.6
, pp. 1187-1189
-
-
Kwon, S.I.1
-
47
-
-
0034496246
-
Two waves of programmed cell death occur during formation and development of somatic embryos in the gymnosperm, Norway spruce
-
Filonova L.H., et al. Two waves of programmed cell death occur during formation and development of somatic embryos in the gymnosperm, Norway spruce. J. Cell Sci. 2000, 113:4399-4411.
-
(2000)
J. Cell Sci.
, vol.113
, pp. 4399-4411
-
-
Filonova, L.H.1
-
48
-
-
84897458286
-
Somatic embryogenesis: life and death processes during apical-basal patterning
-
Smertenko A., Bozhkov P.V. Somatic embryogenesis: life and death processes during apical-basal patterning. J. Exp. Bot. 2014, 65:1343-1360.
-
(2014)
J. Exp. Bot.
, vol.65
, pp. 1343-1360
-
-
Smertenko, A.1
Bozhkov, P.V.2
-
49
-
-
84897933617
-
Autophagy and metacaspase determine the mode of cell death in plants
-
Minina E.A., et al. Autophagy and metacaspase determine the mode of cell death in plants. J. Cell Biol. 2013, 203:917-927.
-
(2013)
J. Cell Biol.
, vol.203
, pp. 917-927
-
-
Minina, E.A.1
-
50
-
-
9144266384
-
Autophagy gene disruption reveals a non-vacuolar cell death pathway in Dictyostelium
-
Kosta A., et al. Autophagy gene disruption reveals a non-vacuolar cell death pathway in Dictyostelium. J. Biol. Chem. 2004, 279:48404-48409.
-
(2004)
J. Biol. Chem.
, vol.279
, pp. 48404-48409
-
-
Kosta, A.1
-
51
-
-
79955682121
-
Atg1 allows second-signaled autophagic cell death in Dictyostelium
-
Luciani M.F., et al. Atg1 allows second-signaled autophagic cell death in Dictyostelium. Autophagy 2011, 7:501-508.
-
(2011)
Autophagy
, vol.7
, pp. 501-508
-
-
Luciani, M.F.1
-
52
-
-
0033638182
-
Identification of paracaspases and metacaspases: two ancient families of caspase-like proteins, one of which plays a key role in MALT lymphoma
-
Uren A.G., et al. Identification of paracaspases and metacaspases: two ancient families of caspase-like proteins, one of which plays a key role in MALT lymphoma. Mol. Cell 2000, 6:961-967.
-
(2000)
Mol. Cell
, vol.6
, pp. 961-967
-
-
Uren, A.G.1
-
53
-
-
78650493070
-
Aspasing out metacaspases and caspases: proteases of many trades
-
Bozhkov P.V., et al. Aspasing out metacaspases and caspases: proteases of many trades. Sci. Signal. 2010, 3:pe48.
-
(2010)
Sci. Signal.
, vol.3
, pp. pe48
-
-
Bozhkov, P.V.1
-
54
-
-
79960216439
-
Metacaspases
-
Tsiatsiani L., et al. Metacaspases. Cell Death Differ. 2011, 18:1279-1288.
-
(2011)
Cell Death Differ.
, vol.18
, pp. 1279-1288
-
-
Tsiatsiani, L.1
-
55
-
-
2342620831
-
Metacaspase-dependent programmed cell death is essential for plant embryogenesis
-
Suarez M.F., et al. Metacaspase-dependent programmed cell death is essential for plant embryogenesis. Curr. Biol. 2004, 14:R339-R340.
-
(2004)
Curr. Biol.
, vol.14
, pp. R339-R340
-
-
Suarez, M.F.1
-
56
-
-
26444506789
-
Cysteine protease mcII-Pa executes programmed cell death during plant embryogenesis
-
Bozhkov P.V., et al. Cysteine protease mcII-Pa executes programmed cell death during plant embryogenesis. Proc. Natl. Acad. Sci. U.S.A. 2005, 102:14463-14468.
-
(2005)
Proc. Natl. Acad. Sci. U.S.A.
, vol.102
, pp. 14463-14468
-
-
Bozhkov, P.V.1
-
57
-
-
84884416703
-
Post mortem function of AtMC9 in xylem vessel elements
-
Bollhoner B., et al. Post mortem function of AtMC9 in xylem vessel elements. New Phytol. 2013, 200:498-510.
-
(2013)
New Phytol.
, vol.200
, pp. 498-510
-
-
Bollhoner, B.1
-
58
-
-
84899707096
-
Vacuolar cell death in plants: metacaspase releases the brakes on autophagy
-
Minina E.A., et al. Vacuolar cell death in plants: metacaspase releases the brakes on autophagy. Autophagy 2014, 10:928-929.
-
(2014)
Autophagy
, vol.10
, pp. 928-929
-
-
Minina, E.A.1
-
59
-
-
1642442429
-
Developmental cell death in Dictyostelium does not require paracaspase
-
Roisin-Bouffay C., et al. Developmental cell death in Dictyostelium does not require paracaspase. J. Biol. Chem. 2004, 279:11489-11494.
-
(2004)
J. Biol. Chem.
, vol.279
, pp. 11489-11494
-
-
Roisin-Bouffay, C.1
-
60
-
-
78649707971
-
Arabidopsis type I metacaspases control cell death
-
Coll N.S., et al. Arabidopsis type I metacaspases control cell death. Science 2010, 330:1393-1397.
-
(2010)
Science
, vol.330
, pp. 1393-1397
-
-
Coll, N.S.1
-
61
-
-
84905904867
-
The plant metacaspase AtMC1 in pathogen-triggered programmed cell death and aging: functional linkage with autophagy
-
Coll N.S., et al. The plant metacaspase AtMC1 in pathogen-triggered programmed cell death and aging: functional linkage with autophagy. Cell Death Differ. 2014, 21:1399-1408.
-
(2014)
Cell Death Differ.
, vol.21
, pp. 1399-1408
-
-
Coll, N.S.1
-
62
-
-
84897458583
-
Membrane trafficking and autophagy in pathogen-triggered cell death and immunity
-
Teh O.K., Hofius D. Membrane trafficking and autophagy in pathogen-triggered cell death and immunity. J. Exp. Bot. 2014, 65:1297-1312.
-
(2014)
J. Exp. Bot.
, vol.65
, pp. 1297-1312
-
-
Teh, O.K.1
Hofius, D.2
-
63
-
-
84862295360
-
Guidelines for the use and interpretation of assays for monitoring autophagy
-
Klionsky D.J., et al. Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy 2012, 8:445-544.
-
(2012)
Autophagy
, vol.8
, pp. 445-544
-
-
Klionsky, D.J.1
-
64
-
-
23944448372
-
Inactivation of the autophagy gene bec-1 triggers apoptotic cell death in C. elegans
-
Takacs-Vellai K., et al. Inactivation of the autophagy gene bec-1 triggers apoptotic cell death in C. elegans. Curr. Biol. 2005, 15:1513-1517.
-
(2005)
Curr. Biol.
, vol.15
, pp. 1513-1517
-
-
Takacs-Vellai, K.1
-
65
-
-
84255210700
-
Molecular definitions of cell death subroutines: recommendations of the Nomenclature Committee on Cell Death 2012
-
Galluzzi L., et al. Molecular definitions of cell death subroutines: recommendations of the Nomenclature Committee on Cell Death 2012. Cell Death Differ. 2012, 19:107-120.
-
(2012)
Cell Death Differ.
, vol.19
, pp. 107-120
-
-
Galluzzi, L.1
-
66
-
-
84883288288
-
Detection and measurement of necrosis in plants
-
Minina E.A., et al. Detection and measurement of necrosis in plants. Methods Mol. Biol. 2013, 1004:229-248.
-
(2013)
Methods Mol. Biol.
, vol.1004
, pp. 229-248
-
-
Minina, E.A.1
-
68
-
-
70350655656
-
A novel membrane fusion-mediated plant immunity against bacterial pathogens
-
Hatsugai N., et al. A novel membrane fusion-mediated plant immunity against bacterial pathogens. Genes Dev. 2009, 23:2496-2506.
-
(2009)
Genes Dev.
, vol.23
, pp. 2496-2506
-
-
Hatsugai, N.1
|