메뉴 건너뛰기




Volumn 19, Issue 11, 2014, Pages 692-697

Autophagy as initiator or executioner of cell death

Author keywords

Autophagy; Cell death; Development; Hypersensitive response

Indexed keywords

ANIMAL; AUTOPHAGY; PHYSIOLOGY; PLANT CELL;

EID: 84908871819     PISSN: 13601385     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.tplants.2014.07.007     Document Type: Review
Times cited : (116)

References (68)
  • 1
    • 84894565195 scopus 로고    scopus 로고
    • Self-consumption: the interplay of autophagy and apoptosis
    • Marino G., et al. Self-consumption: the interplay of autophagy and apoptosis. Nat. Rev. Mol. Cell Biol. 2014, 15:81-94.
    • (2014) Nat. Rev. Mol. Cell Biol. , vol.15 , pp. 81-94
    • Marino, G.1
  • 2
    • 42449114966 scopus 로고    scopus 로고
    • Transcriptional control of human p53-regulated genes
    • Riley T., et al. Transcriptional control of human p53-regulated genes. Nat. Rev. Mol. Cell Biol. 2008, 9:402-412.
    • (2008) Nat. Rev. Mol. Cell Biol. , vol.9 , pp. 402-412
    • Riley, T.1
  • 3
    • 84872067228 scopus 로고    scopus 로고
    • DAPK plays an important role in panobinostat-induced autophagy and commits cells to apoptosis under autophagy deficient conditions
    • Gandesiri M., et al. DAPK plays an important role in panobinostat-induced autophagy and commits cells to apoptosis under autophagy deficient conditions. Apoptosis 2012, 17:1300-1315.
    • (2012) Apoptosis , vol.17 , pp. 1300-1315
    • Gandesiri, M.1
  • 4
    • 77957654940 scopus 로고    scopus 로고
    • Autophagic degradation of active caspase-8: a crosstalk mechanism between autophagy and apoptosis
    • Hou W., et al. Autophagic degradation of active caspase-8: a crosstalk mechanism between autophagy and apoptosis. Autophagy 2010, 6:891-900.
    • (2010) Autophagy , vol.6 , pp. 891-900
    • Hou, W.1
  • 5
    • 84891303438 scopus 로고    scopus 로고
    • Autophagy variation within a cell population determines cell fate through selective degradation of Fap-1
    • Gump J.M., et al. Autophagy variation within a cell population determines cell fate through selective degradation of Fap-1. Nat. Cell Biol. 2014, 16:47-54.
    • (2014) Nat. Cell Biol. , vol.16 , pp. 47-54
    • Gump, J.M.1
  • 6
    • 78649636176 scopus 로고    scopus 로고
    • Caspase-mediated cleavage of Beclin-1 inactivates Beclin-1-induced autophagy and enhances apoptosis by promoting the release of proapoptotic factors from mitochondria
    • Wirawan E., et al. Caspase-mediated cleavage of Beclin-1 inactivates Beclin-1-induced autophagy and enhances apoptosis by promoting the release of proapoptotic factors from mitochondria. Cell Death Dis. 2010, 1:e18.
    • (2010) Cell Death Dis. , vol.1 , pp. e18
    • Wirawan, E.1
  • 7
    • 33749162486 scopus 로고    scopus 로고
    • Calpain-mediated cleavage of Atg5 switches autophagy to apoptosis
    • Yousefi S., et al. Calpain-mediated cleavage of Atg5 switches autophagy to apoptosis. Nat. Cell Biol. 2006, 8:1124-1132.
    • (2006) Nat. Cell Biol. , vol.8 , pp. 1124-1132
    • Yousefi, S.1
  • 8
    • 33847404337 scopus 로고    scopus 로고
    • Autophagy gene-dependent clearance of apoptotic cells during embryonic development
    • Qu X., et al. Autophagy gene-dependent clearance of apoptotic cells during embryonic development. Cell 2007, 128:931-946.
    • (2007) Cell , vol.128 , pp. 931-946
    • Qu, X.1
  • 9
    • 36849088609 scopus 로고    scopus 로고
    • Growth arrest and autophagy are required for salivary gland cell degradation in Drosophila
    • Berry D.L., Baehrecke E.H. Growth arrest and autophagy are required for salivary gland cell degradation in Drosophila. Cell 2007, 131:1137-1148.
    • (2007) Cell , vol.131 , pp. 1137-1148
    • Berry, D.L.1    Baehrecke, E.H.2
  • 10
    • 84856431622 scopus 로고    scopus 로고
    • The end of autophagic cell death?
    • Shen S., et al. The end of autophagic cell death?. Autophagy 2012, 8:1-3.
    • (2012) Autophagy , vol.8 , pp. 1-3
    • Shen, S.1
  • 11
    • 79960210750 scopus 로고    scopus 로고
    • Programmed cell death in the plant immune system
    • Coll N.S., et al. Programmed cell death in the plant immune system. Cell Death Differ. 2011, 18:1247-1256.
    • (2011) Cell Death Differ. , vol.18 , pp. 1247-1256
    • Coll, N.S.1
  • 12
    • 79960205826 scopus 로고    scopus 로고
    • Morphological classification of plant cell deaths
    • van Doorn W.G., et al. Morphological classification of plant cell deaths. Cell Death Differ. 2011, 18:1241-1246.
    • (2011) Cell Death Differ. , vol.18 , pp. 1241-1246
    • van Doorn, W.G.1
  • 13
    • 84865859612 scopus 로고    scopus 로고
    • Autophagy: pathways for self-eating in plant cells
    • Liu Y., Bassham D.C. Autophagy: pathways for self-eating in plant cells. Annu. Rev. Plant Biol. 2012, 63:215-237.
    • (2012) Annu. Rev. Plant Biol. , vol.63 , pp. 215-237
    • Liu, Y.1    Bassham, D.C.2
  • 14
    • 0015651959 scopus 로고
    • Correlations in differentiation of protophloem sieve elements of Allium cepa root
    • Esau K., Gill R.H. Correlations in differentiation of protophloem sieve elements of Allium cepa root. J. Ultrastruct. Res. 1973, 44:310-328.
    • (1973) J. Ultrastruct. Res. , vol.44 , pp. 310-328
    • Esau, K.1    Gill, R.H.2
  • 15
    • 0000269734 scopus 로고
    • Protein bodies of mung bean cotyledons as autophagic organelles
    • Van der Wilden W., et al. Protein bodies of mung bean cotyledons as autophagic organelles. Proc. Natl. Acad. Sci. U.S.A. 1980, 77:428-432.
    • (1980) Proc. Natl. Acad. Sci. U.S.A. , vol.77 , pp. 428-432
    • Van der Wilden, W.1
  • 17
    • 0002773832 scopus 로고
    • Plastolysomes - plastids involved in autolysis of embryo-suspensor in Phaseolus
    • Nagl W. Plastolysomes - plastids involved in autolysis of embryo-suspensor in Phaseolus. Z. Pflanzenphysiol. 1977, 85:45-51.
    • (1977) Z. Pflanzenphysiol. , vol.85 , pp. 45-51
    • Nagl, W.1
  • 18
    • 85012759413 scopus 로고
    • Ultrastructural and developmental aspects of autolysis in embryo-suspensors
    • Nagl W. Ultrastructural and developmental aspects of autolysis in embryo-suspensors. Ber. Deut. Bot. Ges. 1976, 89:301-311.
    • (1976) Ber. Deut. Bot. Ges. , vol.89 , pp. 301-311
    • Nagl, W.1
  • 19
    • 0002371680 scopus 로고
    • Vacuolar localization of proteases and degradation of chloroplasts in mesophyll protoplasts from senescing primary wheat leaves
    • Wittenbach V.A., et al. Vacuolar localization of proteases and degradation of chloroplasts in mesophyll protoplasts from senescing primary wheat leaves. Plant Physiol. 1982, 69:98-102.
    • (1982) Plant Physiol. , vol.69 , pp. 98-102
    • Wittenbach, V.A.1
  • 20
    • 55549117167 scopus 로고    scopus 로고
    • Mobilization of rubisco and stroma-localized fluorescent proteins of chloroplasts to the vacuole by an ATG gene-dependent autophagic process
    • Ishida H., et al. Mobilization of rubisco and stroma-localized fluorescent proteins of chloroplasts to the vacuole by an ATG gene-dependent autophagic process. Plant Physiol. 2008, 148:142-155.
    • (2008) Plant Physiol. , vol.148 , pp. 142-155
    • Ishida, H.1
  • 21
    • 60249083823 scopus 로고    scopus 로고
    • Autophagy plays a role in chloroplast degradation during senescence in individually darkened leaves
    • Wada S., et al. Autophagy plays a role in chloroplast degradation during senescence in individually darkened leaves. Plant Physiol. 2009, 149:885-893.
    • (2009) Plant Physiol. , vol.149 , pp. 885-893
    • Wada, S.1
  • 22
    • 0001766209 scopus 로고
    • Lysosomal concept for plant pathology
    • Wilson C.L. Lysosomal concept for plant pathology. Annu. Rev. Phytopathol. 1973, 11:247-272.
    • (1973) Annu. Rev. Phytopathol. , vol.11 , pp. 247-272
    • Wilson, C.L.1
  • 23
    • 79960222617 scopus 로고    scopus 로고
    • Role of autophagy in disease resistance and hypersensitive response-associated cell death
    • Hofius D., et al. Role of autophagy in disease resistance and hypersensitive response-associated cell death. Cell Death Differ. 2011, 18:1257-1262.
    • (2011) Cell Death Differ. , vol.18 , pp. 1257-1262
    • Hofius, D.1
  • 24
    • 79959971427 scopus 로고    scopus 로고
    • What can plant autophagy do for an innate immune response?
    • Hayward A.P., Dinesh-Kumar S.P. What can plant autophagy do for an innate immune response?. Annu. Rev. Phytopathol. 2011, 49:557-576.
    • (2011) Annu. Rev. Phytopathol. , vol.49 , pp. 557-576
    • Hayward, A.P.1    Dinesh-Kumar, S.P.2
  • 25
    • 19344368318 scopus 로고    scopus 로고
    • Autophagy regulates programmed cell death during the plant innate immune response
    • Liu Y., et al. Autophagy regulates programmed cell death during the plant innate immune response. Cell 2005, 121:567-577.
    • (2005) Cell , vol.121 , pp. 567-577
    • Liu, Y.1
  • 26
    • 38049001895 scopus 로고    scopus 로고
    • Arabidopsis ATG6 is required to limit the pathogen-associated cell death response
    • Patel S., Dinesh-Kumar S.P. Arabidopsis ATG6 is required to limit the pathogen-associated cell death response. Autophagy 2008, 4:20-27.
    • (2008) Autophagy , vol.4 , pp. 20-27
    • Patel, S.1    Dinesh-Kumar, S.P.2
  • 27
    • 70849127320 scopus 로고    scopus 로고
    • Autophagy negatively regulates cell death by controlling NPR1-dependent salicylic acid signaling during senescence and the innate immune response in Arabidopsis
    • Yoshimoto K., et al. Autophagy negatively regulates cell death by controlling NPR1-dependent salicylic acid signaling during senescence and the innate immune response in Arabidopsis. Plant Cell 2009, 21:2914-2927.
    • (2009) Plant Cell , vol.21 , pp. 2914-2927
    • Yoshimoto, K.1
  • 28
    • 79959978116 scopus 로고    scopus 로고
    • Autophagy differentially controls plant basal immunity to biotrophic and necrotrophic pathogens
    • Lenz H.D., et al. Autophagy differentially controls plant basal immunity to biotrophic and necrotrophic pathogens. Plant J. 2011, 66:818-830.
    • (2011) Plant J. , vol.66 , pp. 818-830
    • Lenz, H.D.1
  • 29
    • 79958199637 scopus 로고    scopus 로고
    • A critical role of autophagy in plant resistance to necrotrophic fungal pathogens
    • Lai Z., et al. A critical role of autophagy in plant resistance to necrotrophic fungal pathogens. Plant J. 2011, 66:953-968.
    • (2011) Plant J. , vol.66 , pp. 953-968
    • Lai, Z.1
  • 30
    • 65549157489 scopus 로고    scopus 로고
    • Autophagic components contribute to hypersensitive cell death in Arabidopsis
    • Hofius D., et al. Autophagic components contribute to hypersensitive cell death in Arabidopsis. Cell 2009, 137:773-783.
    • (2009) Cell , vol.137 , pp. 773-783
    • Hofius, D.1
  • 31
    • 33846378524 scopus 로고    scopus 로고
    • Degradation of oxidized proteins by autophagy during oxidative stress in Arabidopsis
    • Xiong Y., et al. Degradation of oxidized proteins by autophagy during oxidative stress in Arabidopsis. Plant Physiol. 2007, 143:291-299.
    • (2007) Plant Physiol. , vol.143 , pp. 291-299
    • Xiong, Y.1
  • 32
    • 84863091497 scopus 로고    scopus 로고
    • The Arabidopsis NPR1 protein is a receptor for the plant defense hormone salicylic acid
    • Wu Y., et al. The Arabidopsis NPR1 protein is a receptor for the plant defense hormone salicylic acid. Cell Rep. 2012, 1:639-647.
    • (2012) Cell Rep. , vol.1 , pp. 639-647
    • Wu, Y.1
  • 33
    • 84862298224 scopus 로고    scopus 로고
    • NPR3 and NPR4 are receptors for the immune signal salicylic acid in plants
    • Fu Z.Q., et al. NPR3 and NPR4 are receptors for the immune signal salicylic acid in plants. Nature 2012, 486:228-232.
    • (2012) Nature , vol.486 , pp. 228-232
    • Fu, Z.Q.1
  • 34
    • 0034754848 scopus 로고    scopus 로고
    • A role for salicylic acid and NPR1 in regulating cell growth in Arabidopsis
    • Vanacker H., et al. A role for salicylic acid and NPR1 in regulating cell growth in Arabidopsis. Plant J. 2001, 28:209-216.
    • (2001) Plant J. , vol.28 , pp. 209-216
    • Vanacker, H.1
  • 35
    • 84869061242 scopus 로고    scopus 로고
    • Salicylic acid binds NPR3 and NPR4 to regulate NPR1-dependent defense responses
    • Moreau M., et al. Salicylic acid binds NPR3 and NPR4 to regulate NPR1-dependent defense responses. Cell Res. 2012, 22:1631-1633.
    • (2012) Cell Res. , vol.22 , pp. 1631-1633
    • Moreau, M.1
  • 36
    • 84871899675 scopus 로고    scopus 로고
    • Degradation of the endoplasmic reticulum by autophagy during endoplasmic reticulum stress in Arabidopsis
    • Liu Y., et al. Degradation of the endoplasmic reticulum by autophagy during endoplasmic reticulum stress in Arabidopsis. Plant Cell 2012, 24:4635-4651.
    • (2012) Plant Cell , vol.24 , pp. 4635-4651
    • Liu, Y.1
  • 37
    • 18644369120 scopus 로고    scopus 로고
    • Induction of protein secretory pathway is required for systemic acquired resistance
    • Wang D., et al. Induction of protein secretory pathway is required for systemic acquired resistance. Science 2005, 308:1036-1040.
    • (2005) Science , vol.308 , pp. 1036-1040
    • Wang, D.1
  • 38
    • 84891507370 scopus 로고    scopus 로고
    • Catalase and NO CATALASE ACTIVITY1 promote autophagy-dependent cell death in Arabidopsis
    • Hackenberg T., et al. Catalase and NO CATALASE ACTIVITY1 promote autophagy-dependent cell death in Arabidopsis. Plant Cell 2013, 25:4616-4626.
    • (2013) Plant Cell , vol.25 , pp. 4616-4626
    • Hackenberg, T.1
  • 39
    • 84896964529 scopus 로고    scopus 로고
    • Signaling unmasked: autophagy and catalase promote programmed cell death
    • Petersen M., et al. Signaling unmasked: autophagy and catalase promote programmed cell death. Autophagy 2014, 10:520-521.
    • (2014) Autophagy , vol.10 , pp. 520-521
    • Petersen, M.1
  • 40
    • 77955704591 scopus 로고    scopus 로고
    • Peroxisomal hydrogen peroxide is coupled to biotic defense responses by ISOCHORISMATE SYNTHASE1 in a daylength-related manner
    • Chaouch S., et al. Peroxisomal hydrogen peroxide is coupled to biotic defense responses by ISOCHORISMATE SYNTHASE1 in a daylength-related manner. Plant Physiol. 2010, 153:1692-1705.
    • (2010) Plant Physiol. , vol.153 , pp. 1692-1705
    • Chaouch, S.1
  • 41
    • 84875738550 scopus 로고    scopus 로고
    • The Rab GTPase RabG3b positively regulates autophagy and immunity-associated hypersensitive cell death in Arabidopsis
    • Kwon S.I., et al. The Rab GTPase RabG3b positively regulates autophagy and immunity-associated hypersensitive cell death in Arabidopsis. Plant Physiol. 2013, 161:1722-1736.
    • (2013) Plant Physiol. , vol.161 , pp. 1722-1736
    • Kwon, S.I.1
  • 42
    • 77957234857 scopus 로고    scopus 로고
    • The Rab GTPase RabG3b functions in autophagy and contributes to tracheary element differentiation in Arabidopsis
    • Kwon S.I., et al. The Rab GTPase RabG3b functions in autophagy and contributes to tracheary element differentiation in Arabidopsis. Plant J. 2010, 64:151-164.
    • (2010) Plant J. , vol.64 , pp. 151-164
    • Kwon, S.I.1
  • 43
    • 0034773645 scopus 로고    scopus 로고
    • Regulation and execution of programmed cell death in response to pathogens, stress and developmental cues
    • Beers E.P., McDowell J.M. Regulation and execution of programmed cell death in response to pathogens, stress and developmental cues. Curr. Opin. Plant Biol. 2001, 4:561-567.
    • (2001) Curr. Opin. Plant Biol. , vol.4 , pp. 561-567
    • Beers, E.P.1    McDowell, J.M.2
  • 44
    • 26444534441 scopus 로고    scopus 로고
    • Programmed cell death in plant embryogenesis
    • Bozhkov P.V., et al. Programmed cell death in plant embryogenesis. Curr. Top. Dev. Biol. 2005, 67:135-179.
    • (2005) Curr. Top. Dev. Biol. , vol.67 , pp. 135-179
    • Bozhkov, P.V.1
  • 45
    • 43149090294 scopus 로고    scopus 로고
    • The hypersensitive response; the centenary is upon us but how much do we know?
    • Mur L.A., et al. The hypersensitive response; the centenary is upon us but how much do we know?. J. Exp. Bot. 2008, 59:501-520.
    • (2008) J. Exp. Bot. , vol.59 , pp. 501-520
    • Mur, L.A.1
  • 46
    • 78649254014 scopus 로고    scopus 로고
    • Role of Arabidopsis RabG3b and autophagy in tracheary element differentiation
    • Kwon S.I., et al. Role of Arabidopsis RabG3b and autophagy in tracheary element differentiation. Autophagy 2010, 6:1187-1189.
    • (2010) Autophagy , vol.6 , pp. 1187-1189
    • Kwon, S.I.1
  • 47
    • 0034496246 scopus 로고    scopus 로고
    • Two waves of programmed cell death occur during formation and development of somatic embryos in the gymnosperm, Norway spruce
    • Filonova L.H., et al. Two waves of programmed cell death occur during formation and development of somatic embryos in the gymnosperm, Norway spruce. J. Cell Sci. 2000, 113:4399-4411.
    • (2000) J. Cell Sci. , vol.113 , pp. 4399-4411
    • Filonova, L.H.1
  • 48
    • 84897458286 scopus 로고    scopus 로고
    • Somatic embryogenesis: life and death processes during apical-basal patterning
    • Smertenko A., Bozhkov P.V. Somatic embryogenesis: life and death processes during apical-basal patterning. J. Exp. Bot. 2014, 65:1343-1360.
    • (2014) J. Exp. Bot. , vol.65 , pp. 1343-1360
    • Smertenko, A.1    Bozhkov, P.V.2
  • 49
    • 84897933617 scopus 로고    scopus 로고
    • Autophagy and metacaspase determine the mode of cell death in plants
    • Minina E.A., et al. Autophagy and metacaspase determine the mode of cell death in plants. J. Cell Biol. 2013, 203:917-927.
    • (2013) J. Cell Biol. , vol.203 , pp. 917-927
    • Minina, E.A.1
  • 50
    • 9144266384 scopus 로고    scopus 로고
    • Autophagy gene disruption reveals a non-vacuolar cell death pathway in Dictyostelium
    • Kosta A., et al. Autophagy gene disruption reveals a non-vacuolar cell death pathway in Dictyostelium. J. Biol. Chem. 2004, 279:48404-48409.
    • (2004) J. Biol. Chem. , vol.279 , pp. 48404-48409
    • Kosta, A.1
  • 51
    • 79955682121 scopus 로고    scopus 로고
    • Atg1 allows second-signaled autophagic cell death in Dictyostelium
    • Luciani M.F., et al. Atg1 allows second-signaled autophagic cell death in Dictyostelium. Autophagy 2011, 7:501-508.
    • (2011) Autophagy , vol.7 , pp. 501-508
    • Luciani, M.F.1
  • 52
    • 0033638182 scopus 로고    scopus 로고
    • Identification of paracaspases and metacaspases: two ancient families of caspase-like proteins, one of which plays a key role in MALT lymphoma
    • Uren A.G., et al. Identification of paracaspases and metacaspases: two ancient families of caspase-like proteins, one of which plays a key role in MALT lymphoma. Mol. Cell 2000, 6:961-967.
    • (2000) Mol. Cell , vol.6 , pp. 961-967
    • Uren, A.G.1
  • 53
    • 78650493070 scopus 로고    scopus 로고
    • Aspasing out metacaspases and caspases: proteases of many trades
    • Bozhkov P.V., et al. Aspasing out metacaspases and caspases: proteases of many trades. Sci. Signal. 2010, 3:pe48.
    • (2010) Sci. Signal. , vol.3 , pp. pe48
    • Bozhkov, P.V.1
  • 54
  • 55
    • 2342620831 scopus 로고    scopus 로고
    • Metacaspase-dependent programmed cell death is essential for plant embryogenesis
    • Suarez M.F., et al. Metacaspase-dependent programmed cell death is essential for plant embryogenesis. Curr. Biol. 2004, 14:R339-R340.
    • (2004) Curr. Biol. , vol.14 , pp. R339-R340
    • Suarez, M.F.1
  • 56
    • 26444506789 scopus 로고    scopus 로고
    • Cysteine protease mcII-Pa executes programmed cell death during plant embryogenesis
    • Bozhkov P.V., et al. Cysteine protease mcII-Pa executes programmed cell death during plant embryogenesis. Proc. Natl. Acad. Sci. U.S.A. 2005, 102:14463-14468.
    • (2005) Proc. Natl. Acad. Sci. U.S.A. , vol.102 , pp. 14463-14468
    • Bozhkov, P.V.1
  • 57
    • 84884416703 scopus 로고    scopus 로고
    • Post mortem function of AtMC9 in xylem vessel elements
    • Bollhoner B., et al. Post mortem function of AtMC9 in xylem vessel elements. New Phytol. 2013, 200:498-510.
    • (2013) New Phytol. , vol.200 , pp. 498-510
    • Bollhoner, B.1
  • 58
    • 84899707096 scopus 로고    scopus 로고
    • Vacuolar cell death in plants: metacaspase releases the brakes on autophagy
    • Minina E.A., et al. Vacuolar cell death in plants: metacaspase releases the brakes on autophagy. Autophagy 2014, 10:928-929.
    • (2014) Autophagy , vol.10 , pp. 928-929
    • Minina, E.A.1
  • 59
    • 1642442429 scopus 로고    scopus 로고
    • Developmental cell death in Dictyostelium does not require paracaspase
    • Roisin-Bouffay C., et al. Developmental cell death in Dictyostelium does not require paracaspase. J. Biol. Chem. 2004, 279:11489-11494.
    • (2004) J. Biol. Chem. , vol.279 , pp. 11489-11494
    • Roisin-Bouffay, C.1
  • 60
    • 78649707971 scopus 로고    scopus 로고
    • Arabidopsis type I metacaspases control cell death
    • Coll N.S., et al. Arabidopsis type I metacaspases control cell death. Science 2010, 330:1393-1397.
    • (2010) Science , vol.330 , pp. 1393-1397
    • Coll, N.S.1
  • 61
    • 84905904867 scopus 로고    scopus 로고
    • The plant metacaspase AtMC1 in pathogen-triggered programmed cell death and aging: functional linkage with autophagy
    • Coll N.S., et al. The plant metacaspase AtMC1 in pathogen-triggered programmed cell death and aging: functional linkage with autophagy. Cell Death Differ. 2014, 21:1399-1408.
    • (2014) Cell Death Differ. , vol.21 , pp. 1399-1408
    • Coll, N.S.1
  • 62
    • 84897458583 scopus 로고    scopus 로고
    • Membrane trafficking and autophagy in pathogen-triggered cell death and immunity
    • Teh O.K., Hofius D. Membrane trafficking and autophagy in pathogen-triggered cell death and immunity. J. Exp. Bot. 2014, 65:1297-1312.
    • (2014) J. Exp. Bot. , vol.65 , pp. 1297-1312
    • Teh, O.K.1    Hofius, D.2
  • 63
    • 84862295360 scopus 로고    scopus 로고
    • Guidelines for the use and interpretation of assays for monitoring autophagy
    • Klionsky D.J., et al. Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy 2012, 8:445-544.
    • (2012) Autophagy , vol.8 , pp. 445-544
    • Klionsky, D.J.1
  • 64
    • 23944448372 scopus 로고    scopus 로고
    • Inactivation of the autophagy gene bec-1 triggers apoptotic cell death in C. elegans
    • Takacs-Vellai K., et al. Inactivation of the autophagy gene bec-1 triggers apoptotic cell death in C. elegans. Curr. Biol. 2005, 15:1513-1517.
    • (2005) Curr. Biol. , vol.15 , pp. 1513-1517
    • Takacs-Vellai, K.1
  • 65
    • 84255210700 scopus 로고    scopus 로고
    • Molecular definitions of cell death subroutines: recommendations of the Nomenclature Committee on Cell Death 2012
    • Galluzzi L., et al. Molecular definitions of cell death subroutines: recommendations of the Nomenclature Committee on Cell Death 2012. Cell Death Differ. 2012, 19:107-120.
    • (2012) Cell Death Differ. , vol.19 , pp. 107-120
    • Galluzzi, L.1
  • 66
    • 84883288288 scopus 로고    scopus 로고
    • Detection and measurement of necrosis in plants
    • Minina E.A., et al. Detection and measurement of necrosis in plants. Methods Mol. Biol. 2013, 1004:229-248.
    • (2013) Methods Mol. Biol. , vol.1004 , pp. 229-248
    • Minina, E.A.1
  • 67
    • 79960228202 scopus 로고    scopus 로고
    • The role of vacuole in plant cell death
    • Hara-Nishimura I., Hatsugai N. The role of vacuole in plant cell death. Cell Death Differ. 2011, 18:1298-1304.
    • (2011) Cell Death Differ. , vol.18 , pp. 1298-1304
    • Hara-Nishimura, I.1    Hatsugai, N.2
  • 68
    • 70350655656 scopus 로고    scopus 로고
    • A novel membrane fusion-mediated plant immunity against bacterial pathogens
    • Hatsugai N., et al. A novel membrane fusion-mediated plant immunity against bacterial pathogens. Genes Dev. 2009, 23:2496-2506.
    • (2009) Genes Dev. , vol.23 , pp. 2496-2506
    • Hatsugai, N.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.