메뉴 건너뛰기




Volumn , Issue , 2014, Pages 85-90

A hybrid model for named entity recognition using unstructured medical text

Author keywords

Association rules; biomedical named entity recognition; information extraction; medical text mining

Indexed keywords

ASSOCIATION RULES; CHARACTER RECOGNITION; INFORMATION RETRIEVAL; NATURAL LANGUAGE PROCESSING SYSTEMS; SYSTEMS ENGINEERING; TEXT PROCESSING;

EID: 84908626042     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/SYSOSE.2014.6892468     Document Type: Conference Paper
Times cited : (21)

References (33)
  • 1
    • 84888192341 scopus 로고    scopus 로고
    • Unsupervised biomedical named entity recognition: Experiments with clinical and biological texts
    • Dec
    • S. Zhang and N. Elhadad, "Unsupervised biomedical named entity recognition: Experiments with clinical and biological texts, " Journal of Biomedical Informatics, vol. 46, pp. 1088-1098, Dec 2013.
    • (2013) Journal of Biomedical Informatics , vol.46 , pp. 1088-1098
    • Zhang, S.1    Elhadad, N.2
  • 2
    • 27844538955 scopus 로고    scopus 로고
    • Integrating linguistic knowledge into a conditional random fieldframework to identify biomedical named entities
    • Jan
    • T.-h. Tsai, W.-C. Chou, S.-H. Wu, T.-Y. Sung, J. Hsiang, and W.-L. Hsu, "Integrating linguistic knowledge into a conditional random fieldframework to identify biomedical named entities, " Expert Systems with Applications, vol. 30, pp. 117-128, Jan 2006.
    • (2006) Expert Systems with Applications , vol.30 , pp. 117-128
    • Tsai, T.-H.1    Chou, W.-C.2    Wu, S.-H.3    Sung, T.-Y.4    Hsiang, J.5    Hsu, W.-L.6
  • 4
    • 84908628398 scopus 로고    scopus 로고
    • (10 May). MEDLINE
    • (10 May). MEDLINE. Available: http://www. ncbi. nlm. nih. gov/pubmed/
  • 6
    • 84908628397 scopus 로고    scopus 로고
    • PubMed. http://www. ncbi. nlm. nih. gov/pubmed.
  • 8
    • 45549087801 scopus 로고    scopus 로고
    • Exploiting the performance of dictionary-based bio-entity name recognition in biomedical literature
    • Aug
    • Z. Yang, H. Lin, and Y. Li, "Exploiting the performance of dictionary-based bio-entity name recognition in biomedical literature, " Computational Biology and Chemistry, vol. 32, pp. 287-291, Aug 2008.
    • (2008) Computational Biology and Chemistry , vol.32 , pp. 287-291
    • Yang, Z.1    Lin, H.2    Li, Y.3
  • 11
    • 78149480907 scopus 로고    scopus 로고
    • Linguistic approach for identification of medication names and related information in clinical narratives
    • Oct
    • T. Hamon and N. Grabar, "Linguistic approach for identification of medication names and related information in clinical narratives, " Journal of the American Medical Informatics Association, vol. 17, pp. 549-554, Oct 2010.
    • (2010) Journal of the American Medical Informatics Association , vol.17 , pp. 549-554
    • Hamon, T.1    Grabar, N.2
  • 12
    • 78149474640 scopus 로고    scopus 로고
    • Extracting medical information from narrative patient records: The case of medication-related information
    • L. Deléger, C. Grouin, and P. Zweigenbaum, "Extracting medical information from narrative patient records: the case of medication-related information, " Journal of the American Medical Informatics Association, vol. 17, pp. 555-558, 2010.
    • (2010) Journal of the American Medical Informatics Association , vol.17 , pp. 555-558
    • Deléger, L.1    Grouin, C.2    Zweigenbaum, P.3
  • 16
    • 84875273930 scopus 로고    scopus 로고
    • Combining multiple classifiers using vote based classifier ensemble technique for named entity recognition
    • May
    • S. Saha and A. Ekbal, "Combining multiple classifiers using vote based classifier ensemble technique for named entity recognition, " Data &Knowledge Engineering, vol. 85, pp. 15-39, May 2013.
    • (2013) Data &Knowledge Engineering , vol.85 , pp. 15-39
    • Saha, S.1    Ekbal, A.2
  • 17
    • 70350569364 scopus 로고    scopus 로고
    • Two learning approaches for protein name extraction
    • Dec
    • S. Tatar and I. Cicekli, "Two learning approaches for protein name extraction, " Journal of Biomedical Informatics, vol. 42, pp. 1046-1055, Dec 2009.
    • (2009) Journal of Biomedical Informatics , vol.42 , pp. 1046-1055
    • Tatar, S.1    Cicekli, I.2
  • 18
    • 78149487508 scopus 로고    scopus 로고
    • High accuracy information extraction of medication information from clinical notes: 2009 i2b2 medication extraction challenge
    • Sept
    • J. Patrick and M. Li, "High accuracy information extraction of medication information from clinical notes: 2009 i2b2 medication extraction challenge, " Journal of the American Medical Informatics Association, vol. 17, pp. 524-527, Sept 2010.
    • (2010) Journal of the American Medical Informatics Association , vol.17 , pp. 524-527
    • Patrick, J.1    Li, M.2
  • 21
    • 84878166593 scopus 로고    scopus 로고
    • An enhanced crfs-based system for information extraction from radiology reports
    • Feb
    • A. Esuli, D. Marcheggiani, and F. Sebastiani, "An enhanced CRFs-based system for information extraction from radiology reports, " Journal of Biomedical Informatics, vol. 46, pp. 1-11, Feb 2013.
    • (2013) Journal of Biomedical Informatics , vol.46 , pp. 1-11
    • Esuli, A.1    Marcheggiani, D.2    Sebastiani, F.3
  • 23
    • 84877581683 scopus 로고    scopus 로고
    • Stacked ensemble coupled with feature selection for biomedical entity extraction
    • A. Ekbal and S. Saha, "Stacked ensemble coupled with feature selection for biomedical entity extraction, " Knowledge-Based Systems, vol. 46, pp. 22-32, 2013.
    • (2013) Knowledge-Based Systems , vol.46 , pp. 22-32
    • Ekbal, A.1    Saha, S.2
  • 24
    • 84856393533 scopus 로고    scopus 로고
    • Boosting performance of gene mention tagging system by hybrid methods
    • L. Li, W. Fan, D. Huang, Y. Dang, and J. Sun, "Boosting performance of gene mention tagging system by hybrid methods, " Journal of Biomedical Informatics, vol. 45, pp. 156-164, 2012.
    • (2012) Journal of Biomedical Informatics , vol.45 , pp. 156-164
    • Li, L.1    Fan, W.2    Huang, D.3    Dang, Y.4    Sun, J.5
  • 25
  • 27
    • 84908628391 scopus 로고    scopus 로고
    • P. University. (2010, May). WordNet. Available
    • P. University. (2010, May). WordNet. Available: http://wordnet. princeton. edu
  • 28
    • 84908642159 scopus 로고    scopus 로고
    • Providing structure to unstructured data
    • Sharing, and Analyzing Complex Information, J. J. Berman and M. Kaufmann, Eds. , ed Boston
    • J. J. Berman, "Providing Structure to Unstructured Data, " in Principles of Big Data-Preparing, Sharing, and Analyzing Complex Information, J. J. Berman and M. Kaufmann, Eds. , ed Boston, 2013, pp. 1-14.
    • (2013) Principles of Big Data-Preparing , pp. 1-14
    • Berman, J.J.1
  • 30
    • 84908628389 scopus 로고    scopus 로고
    • (15 May). U. S. Food and Drug Administration (FDA). Available
    • (15 May). U. S. Food and Drug Administration (FDA). Available: http://www. fda. gov/drugs/informationondrugs/ucm 142438. htm
  • 31
    • 84908628388 scopus 로고    scopus 로고
    • (2013, May). Drug Information Online. Available
    • (2013, May). Drug Information Online. Available: http://www. drugs. com/
  • 32
    • 80051620620 scopus 로고    scopus 로고
    • 1. 3 ed, , p. An API that provides Java applications with the ability to retrieve data from the WordNet database
    • B. Spell, "Java API for WordNet Searching (JAWS), " 1. 3 ed, 2009, p. An API that provides Java applications with the ability to retrieve data from the WordNet database.
    • (2009) Java API for WordNet Searching (JAWS)
    • Spell, B.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.