-
1
-
-
0027262895
-
Multilayer feedforward networks with a nonpolynomial activation function can approximate any function
-
M. Leshno, V. Ya. Lin, A. Pinkus and S. Schocken, "Multilayer feedforward networks with a nonpolynomial activation function can approximate any function", Neural Networks, vol. 6(6), pp. 861-867, 1993.
-
(1993)
Neural Networks
, vol.6
, Issue.6
, pp. 861-867
-
-
Leshno, M.1
Lin V.Ya.2
Pinkus, A.3
Schocken, S.4
-
2
-
-
0031100287
-
Capabilities of a four-layered feedforward neural network: Four layers versus three
-
S. Tamura and M. Tateishi, "Capabilities of a four-layered feedforward neural network: four layers versus three", IEEE Trans. Neural Networks, vol. 8(2), pp. 251-255, 1997.
-
(1997)
IEEE Trans. Neural Networks
, vol.8
, Issue.2
, pp. 251-255
-
-
Tamura, S.1
Tateishi, M.2
-
3
-
-
0031673055
-
Upper bounds on the number of hidden neurons in feedforward networks with arbitrary bounded nonlinear activation functions
-
G.-B. Huang and H. A. Babri, "Upper bounds on the number of hidden neurons in feedforward networks with arbitrary bounded nonlinear activation functions", IEEE Trans. Neural Networks, vol. 9(1), pp. 224-229, 1998.
-
(1998)
IEEE Trans. Neural Networks
, vol.9
, Issue.1
, pp. 224-229
-
-
Huang, G.-B.1
Babri, H.A.2
-
4
-
-
33745903481
-
Extreme learning machine: Theory and applications
-
Dec, Code
-
G.-B. Huang, Q.-Y. Zhu and C.-K. Siew, "Extreme learning machine: Theory and applications", Neurocomputing, vol. 70(1-3), pp. 489-501, Dec. 2006, [Code: http://www.ntu.edu.sg/home/egbhuang/elm-random-hidden-nodes.html].
-
(2006)
Neurocomputing
, vol.70
, Issue.1-3
, pp. 489-501
-
-
Huang, G.-B.1
Zhu, Q.-Y.2
Siew, C.-K.3
-
5
-
-
10944272650
-
Extreme learning machine: A new learning scheme of feedforward neural networks
-
Budapest, Hungary, 25-29 Jul.
-
G.-B. Huang, Q.-Y. Zhu and C.-K. Siew, "Extreme learning machine: A new learning scheme of feedforward neural networks", in Proceedings of International Joint Conference on Neural Networks (IJCNN2004), vol. 2, (Budapest, Hungary), pp. 985-990, 25-29 Jul., 2004.
-
(2004)
Proceedings of International Joint Conference on Neural Networks (IJCNN2004)
, vol.2
, pp. 985-990
-
-
Huang, G.-B.1
Zhu, Q.-Y.2
Siew, C.-K.3
-
6
-
-
0032028728
-
The sample complexity of pattern classification with neural networks: The size of the weights is more important than the size of the network
-
P. L. Bartlett, "The sample complexity of pattern classification with neural networks: the size of the weights is more important than the size of the network", IEEE Trans. Inf. Theory, vol. 44(2), pp. 525-536, 1998.
-
(1998)
IEEE Trans. Inf. Theory
, vol.44
, Issue.2
, pp. 525-536
-
-
Bartlett, P.L.1
-
7
-
-
22844440904
-
Evolutionary extreme learning machine
-
Oct.
-
Q.-Y. Zhu, A. K. Qin, P. N. Suganthan and G.-B. Huang, "Evolutionary extreme learning machine", Pattern Recognition, vol. 38(10), pp. 1759-1763, Oct. 2005.
-
(2005)
Pattern Recognition
, vol.38
, Issue.10
, pp. 1759-1763
-
-
Zhu, Q.-Y.1
Qin, A.K.2
Suganthan, P.N.3
Huang, G.-B.4
-
8
-
-
70449370364
-
A constructive enhancement for online sequential extreme learning machine
-
14-19 Jun.
-
L. Yuan, Y. C. Soh, and G.-B. Huang, "A constructive enhancement for online sequential extreme learning machine", in Proceedings of International Joint Conference on Neural Networks (IJCNN2009), pp. 1708-1713, 14-19 Jun., 2009.
-
(2009)
Proceedings of International Joint Conference on Neural Networks (IJCNN2009)
, pp. 1708-1713
-
-
Yuan, L.1
Soh, Y.C.2
Huang, G.-B.3
-
9
-
-
73949154686
-
OP-ELM: Optimally pruned extreme learning machine
-
Y. Miche, A. Sorjamaa, P. Bas, O. Simula, C. Jutten and A. Lendasse, A., "OP-ELM: optimally pruned extreme learning machine", Neural Networks, IEEE Transactions on, vol. 21(1), pp. 158-162, 2010.
-
(2010)
Neural Networks, IEEE Transactions On
, vol.21
, Issue.1
, pp. 158-162
-
-
Miche, Y.1
Sorjamaa, A.2
Bas, P.3
Simula, O.4
Jutten, C.5
Lendasse, A.A.6
-
10
-
-
55949132682
-
A fast pruned-extreme learning machine for classification problem
-
H. J. Rong, Y. S. Ong, A. H. Tan and Z. Zhu, "A fast pruned-extreme learning machine for classification problem", Neurocomputing, vol. 72(1), pp. 359-366, 2008.
-
(2008)
Neurocomputing
, vol.72
, Issue.1
, pp. 359-366
-
-
Rong, H.J.1
Ong, Y.S.2
Tan, A.H.3
Zhu, Z.4
-
11
-
-
84862822032
-
Efficient and effective algorithms for training single-hidden-layer neural networks
-
1 Apr
-
D. Yu and L. Deng, "Efficient and effective algorithms for training single-hidden-layer neural networks", Pattern Recognition Letters, vol. 33(5), pp. 554-558, 1 Apr. 2012.
-
(2012)
Pattern Recognition Letters
, vol.33
, Issue.5
, pp. 554-558
-
-
Yu, D.1
Deng, L.2
-
13
-
-
83855162246
-
Classifiability-based discriminatory projection pursuit
-
Y. Su, S. Shan, X. Chen and W. Gao, "Classifiability-based discriminatory projection pursuit", IEEE Trans. Neural Networks, vol. 22(12), pp. 2050-2061, 2011.
-
(2011)
IEEE Trans. Neural Networks
, vol.22
, Issue.12
, pp. 2050-2061
-
-
Su, Y.1
Shan, S.2
Chen, X.3
Gao, W.4
-
14
-
-
84877777313
-
Learning with recursive perceptual representations
-
O. Vinyals, Y. Jia, L. Deng and T. Darrell, "Learning with recursive perceptual representations", In Advances in Neural Information Processing Systems, pp. 2834-2842, 2012.
-
(2012)
Advances in Neural Information Processing Systems
, pp. 2834-2842
-
-
Vinyals, O.1
Jia, Y.2
Deng, L.3
Darrell, T.4
-
15
-
-
84865768819
-
Deep convex net: A scalable architecture for speech pattern classification
-
L. Deng and D. Yu, "Deep convex net: A scalable architecture for speech pattern classification", In Proceedings of the Interspeech 2011.
-
(2011)
Proceedings of the Interspeech
-
-
Deng, L.1
Yu, D.2
-
16
-
-
77956002520
-
-
Master's thesis, Department of Computer Science, University of Toronto
-
A. Krizhevsky and G. Hinton, "Learning multiple layers of features from tiny images", Master's thesis, Department of Computer Science, University of Toronto, 2009, [http://www.cs.toronto.edu/~kriz/cifar.html]
-
(2009)
Learning Multiple Layers of Features from Tiny Images
-
-
Krizhevsky, A.1
Hinton, G.2
-
17
-
-
78649492473
-
Optimization method based extreme learning machine for classification
-
G.-B. Huang, X. Ding and H. Zhou, "Optimization method based extreme learning machine for classification", Neurocomputing, vol. 74(1), pp. 155-163, 2010.
-
(2010)
Neurocomputing
, vol.74
, Issue.1
, pp. 155-163
-
-
Huang, G.-B.1
Ding, X.2
Zhou, H.3
-
18
-
-
0003408496
-
-
Irvine, CA: University of California. Department of Information and Computer Science, 460
-
C. L. Blake and C. J. Merz, "UCI Repository of machine learning databases", 1998, [http://www.ics.uci.edu/~mlearn/MLRepository.html]. Irvine, CA: University of California. Department of Information and Computer Science, 460.
-
(1998)
UCI Repository of Machine Learning Databases
-
-
Blake, C.L.1
Merz, C.J.2
-
19
-
-
0032203257
-
Gradient-based learning applied to document recognition
-
Y. LeCun, L. Bottou, Y. Bengio and P. Haffner, "Gradient-based learning applied to document recognition", Proceedings of the IEEE, vol. 86(11), pp. 2278-2324, 1998, [Online]. Available: http://yann. lecun.com/exdb/mnist.
-
(1998)
Proceedings of the IEEE
, vol.86
, Issue.11
, pp. 2278-2324
-
-
Le Cun, Y.1
Bottou, L.2
Bengio, Y.3
Haffner, P.4
-
21
-
-
84908482623
-
Extreme support vector regression
-
Beijing, China, Springer-Verlag, 15-17 Oct.
-
W. Zhu, J. Miao and L. Qing, "Extreme support vector regression", in Proceedings of International Conference on Extreme Learning Machines (ELM2013), Beijing, China, Springer-Verlag, 15-17 Oct. 2013.
-
(2013)
Proceedings of International Conference on Extreme Learning Machines (ELM2013)
-
-
Zhu, W.1
Miao, J.2
Qing, L.3
-
24
-
-
33745805403
-
A fast learning algorithm for deep belief nets
-
G. E. Hinton, S. Osindero and Y. W. Teh, "A fast learning algorithm for deep belief nets", Neural computation, vol. 18(7), pp. 1527-1554, 2006.
-
(2006)
Neural Computation
, vol.18
, Issue.7
, pp. 1527-1554
-
-
Hinton, G.E.1
Osindero, S.2
Teh, Y.W.3
|