메뉴 건너뛰기




Volumn 25, Issue , 2014, Pages 347-359

An augmented multi-objective particle swarm optimizer for building cluster operation decisions

Author keywords

Multi objective optimization; Pareto optimality; Particle swarm optimization; Smart building; Smart grid

Indexed keywords

INTELLIGENT BUILDINGS; PARTICLE SWARM OPTIMIZATION (PSO); ALGORITHMS; BUILDINGS; CLUSTERING ALGORITHMS; ENERGY EFFICIENCY; EVOLUTIONARY ALGORITHMS; LOCAL AREA NETWORKS; PARETO PRINCIPLE; SMART POWER GRIDS;

EID: 84908317216     PISSN: 15684946     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.asoc.2014.08.069     Document Type: Article
Times cited : (36)

References (66)
  • 1
    • 77956203928 scopus 로고    scopus 로고
    • Cyber-physical energy systems: Focus on smart buildings
    • J. Kleissl, and Y. Agarwal Cyber-physical energy systems: focus on smart buildings Proc. 47th Des. Autom. Conf. 2010 749 754
    • (2010) Proc. 47th Des. Autom. Conf. , pp. 749-754
    • Kleissl, J.1    Agarwal, Y.2
  • 2
    • 84908338202 scopus 로고    scopus 로고
    • Johnson Controls Inc. Milwaukee, WI
    • T. Hoffmann Smart Buildings 2009 Johnson Controls Inc. Milwaukee, WI
    • (2009) Smart Buildings
    • Hoffmann, T.1
  • 3
    • 0035483427 scopus 로고    scopus 로고
    • Evaluating the performance of building thermal mass control strategies
    • J.E. Braun, K.W. Montgomery, and N. Chaturvedi Evaluating the performance of building thermal mass control strategies HVAC&R Res. 7 2001 403 428
    • (2001) HVAC&R Res. , vol.7 , pp. 403-428
    • Braun, J.E.1    Montgomery, K.W.2    Chaturvedi, N.3
  • 4
    • 0041428070 scopus 로고    scopus 로고
    • Load control using building thermal mass
    • J.E. Braun Load control using building thermal mass J. Sol. Energy Eng. 125 2003 292 301
    • (2003) J. Sol. Energy Eng. , vol.125 , pp. 292-301
    • Braun, J.E.1
  • 5
    • 0035193305 scopus 로고    scopus 로고
    • Real-time predictive supervisory operation of building thermal systems with thermal mass
    • T.Y. Chen Real-time predictive supervisory operation of building thermal systems with thermal mass Energy Build. 33 2001 141 150
    • (2001) Energy Build. , vol.33 , pp. 141-150
    • Chen, T.Y.1
  • 6
    • 64049112175 scopus 로고    scopus 로고
    • Fuzzy expert system design for operating room air-condition control systems
    • N. Etik, N. Allahverdi, I.U. Sert, and I. Saritas Fuzzy expert system design for operating room air-condition control systems Expert Syst. Appl. 36 2009 9753 9758
    • (2009) Expert Syst. Appl. , vol.36 , pp. 9753-9758
    • Etik, N.1    Allahverdi, N.2    Sert, I.U.3    Saritas, I.4
  • 7
    • 63449111486 scopus 로고    scopus 로고
    • Optimization for ice-storage air-conditioning system using particle swarm algorithm
    • W.-S. Lee, Y. Ting Chen, and T.-H. Wu Optimization for ice-storage air-conditioning system using particle swarm algorithm Appl. Energy 86 2009 1589 1595
    • (2009) Appl. Energy , vol.86 , pp. 1589-1595
    • Lee, W.-S.1    Ting Chen, Y.2    Wu, T.-H.3
  • 8
    • 0030259320 scopus 로고    scopus 로고
    • Development and evaluation of a rule-based control strategy for ice storage systems
    • K.H. Drees, and J.E. Braun Development and evaluation of a rule-based control strategy for ice storage systems HVAC&R Res. 2 1996 312 336
    • (1996) HVAC&R Res. , vol.2 , pp. 312-336
    • Drees, K.H.1    Braun, J.E.2
  • 9
    • 27744574257 scopus 로고    scopus 로고
    • Experimental analysis of simulated reinforcement learning control for active and passive building thermal storage inventory Part 1: Theoretical foundation
    • S. Liu, and G.P. Henze Experimental analysis of simulated reinforcement learning control for active and passive building thermal storage inventory Part 1: Theoretical foundation Energy Build. 38 2006 142 147
    • (2006) Energy Build. , vol.38 , pp. 142-147
    • Liu, S.1    Henze, G.P.2
  • 10
    • 27744441507 scopus 로고    scopus 로고
    • Experimental analysis of simulated reinforcement learning control for active and passive building thermal storage inventory Part 2: Results and analysis
    • S. Liu, and G.P. Henze Experimental analysis of simulated reinforcement learning control for active and passive building thermal storage inventory Part 2: Results and analysis Energy Build. 38 2006 148 161
    • (2006) Energy Build. , vol.38 , pp. 148-161
    • Liu, S.1    Henze, G.P.2
  • 11
    • 34249299364 scopus 로고    scopus 로고
    • Evaluation of reinforcement learning for optimal control of building active and passive thermal storage inventory
    • S. Liu, and G.P. Henze Evaluation of reinforcement learning for optimal control of building active and passive thermal storage inventory J. Sol. Energy Eng. 129 2007 215 225
    • (2007) J. Sol. Energy Eng. , vol.129 , pp. 215-225
    • Liu, S.1    Henze, G.P.2
  • 12
    • 34249029292 scopus 로고    scopus 로고
    • An efficient envelope-based branch and bound algorithm for non-convex combined heat and power production planning
    • A. Rong, and R. Lahdelma An efficient envelope-based branch and bound algorithm for non-convex combined heat and power production planning Eur. J. Oper. Res. 183 2007 412 431
    • (2007) Eur. J. Oper. Res. , vol.183 , pp. 412-431
    • Rong, A.1    Lahdelma, R.2
  • 13
    • 43049121030 scopus 로고    scopus 로고
    • A variant of the dynamic programming algorithm for unit commitment of combined heat and power systems
    • A. Rong, H. Hakonen, and R. Lahdelma A variant of the dynamic programming algorithm for unit commitment of combined heat and power systems Eur. J. Oper. Res. 190 2008 741 755
    • (2008) Eur. J. Oper. Res. , vol.190 , pp. 741-755
    • Rong, A.1    Hakonen, H.2    Lahdelma, R.3
  • 14
    • 36849045754 scopus 로고    scopus 로고
    • Short-term hydropower production planning by stochastic programming
    • S.-E. Fleten, and T.K. Kristoffersen Short-term hydropower production planning by stochastic programming Comput. Oper. Res. 35 2008 2656 2671
    • (2008) Comput. Oper. Res. , vol.35 , pp. 2656-2671
    • Fleten, S.-E.1    Kristoffersen, T.K.2
  • 15
    • 80255123852 scopus 로고    scopus 로고
    • An improved self-adaptive PSO technique for short-term hydrothermal scheduling
    • Y. Wang, J. Zhou, C. Zhou, Y. Wang, H. Qin, and Y. Lu An improved self-adaptive PSO technique for short-term hydrothermal scheduling Expert Syst. Appl. 39 2012 2288 2295
    • (2012) Expert Syst. Appl. , vol.39 , pp. 2288-2295
    • Wang, Y.1    Zhou, J.2    Zhou, C.3    Wang, Y.4    Qin, H.5    Lu, Y.6
  • 16
    • 84879429503 scopus 로고    scopus 로고
    • Optimal wind turbines placement within a distribution market environment
    • G. Mokryani, and P. Siano Optimal wind turbines placement within a distribution market environment Appl. Soft Comput. 13 2013 4038 4046
    • (2013) Appl. Soft Comput. , vol.13 , pp. 4038-4046
    • Mokryani, G.1    Siano, P.2
  • 17
    • 84861908237 scopus 로고    scopus 로고
    • Mixed integer programming of multiobjective hydro-thermal self scheduling
    • A. Ahmadi, J. Aghaei, H.A. Shayanfar, and A. Rabiee Mixed integer programming of multiobjective hydro-thermal self scheduling Appl. Soft Comput. 12 2012 2137 2146
    • (2012) Appl. Soft Comput. , vol.12 , pp. 2137-2146
    • Ahmadi, A.1    Aghaei, J.2    Shayanfar, H.A.3    Rabiee, A.4
  • 18
    • 50149102400 scopus 로고    scopus 로고
    • Particle swarm optimization technique based short-term hydrothermal scheduling
    • K.K. Mandal, M. Basu, and N. Chakraborty Particle swarm optimization technique based short-term hydrothermal scheduling Appl. Soft Comput. 8 2008 1392 1399
    • (2008) Appl. Soft Comput. , vol.8 , pp. 1392-1399
    • Mandal, K.K.1    Basu, M.2    Chakraborty, N.3
  • 19
    • 13844319277 scopus 로고    scopus 로고
    • Operation planning of district heating and cooling plants using genetic algorithms for mixed integer programming
    • M. Sakawa, K. Kato, S. Ushiro, and M. Inaoka Operation planning of district heating and cooling plants using genetic algorithms for mixed integer programming Appl. Soft Comput. 1 2001 139 150
    • (2001) Appl. Soft Comput. , vol.1 , pp. 139-150
    • Sakawa, M.1    Kato, K.2    Ushiro, S.3    Inaoka, M.4
  • 20
    • 84864772624 scopus 로고    scopus 로고
    • On the sizing of a solar thermal electricity plant for multiple objectives using evolutionary optimization
    • K. Deb, F. Ruiz, M. Luque, R. Tewari, J.M. Cabello, and J.M. Cejudo On the sizing of a solar thermal electricity plant for multiple objectives using evolutionary optimization Appl. Soft Comput. 12 2012 3300 3311
    • (2012) Appl. Soft Comput. , vol.12 , pp. 3300-3311
    • Deb, K.1    Ruiz, F.2    Luque, M.3    Tewari, R.4    Cabello, J.M.5    Cejudo, J.M.6
  • 22
    • 80054959771 scopus 로고    scopus 로고
    • Decentralized operation strategies for an integrated building energy system using a memetic algorithm
    • M. Hu, J.D. Weir, and T. Wu Decentralized operation strategies for an integrated building energy system using a memetic algorithm Eur. J. Oper. Res. 217 2012 185 197
    • (2012) Eur. J. Oper. Res. , vol.217 , pp. 185-197
    • Hu, M.1    Weir, J.D.2    Wu, T.3
  • 23
    • 33750267220 scopus 로고    scopus 로고
    • Multi-objective particle swarm optimizers: A survey of the state-of-the-art
    • M. Reyes-Sierra, and C.A. Coello Coello Multi-objective particle swarm optimizers: a survey of the state-of-the-art Int. J. Comput. Intell. Res. 2 2006 287 308
    • (2006) Int. J. Comput. Intell. Res. , vol.2 , pp. 287-308
    • Reyes-Sierra, M.1    Coello Coello, C.A.2
  • 25
    • 78650741651 scopus 로고    scopus 로고
    • Multi-objective particle swarm optimizers: An experimental comparison
    • M. Ehrgott, C. Fonseca, X. Gandibleux, J.-K. Hao, M. Sevaux, Springer Berlin, Heidelberg
    • J.J. Durillo, J. García-Nieto, A.J. Nebro, C.A. Coello Coello, F. Luna, and E. Alba Multi-objective particle swarm optimizers: an experimental comparison M. Ehrgott, C. Fonseca, X. Gandibleux, J.-K. Hao, M. Sevaux, Evol. Multi-Criterion Optim. 2009 Springer Berlin, Heidelberg 495 509
    • (2009) Evol. Multi-Criterion Optim. , pp. 495-509
    • Durillo, J.J.1    García-Nieto, J.2    Nebro, A.J.3    Coello Coello, C.A.4    Luna, F.5    Alba, E.6
  • 30
    • 35448934039 scopus 로고    scopus 로고
    • A review of particle swarm optimization. Part I: Background and development
    • A. Banks, J. Vincent, and C. Anyakoha A review of particle swarm optimization. Part I: Background and development Nat. Comput. 6 2007 467 484
    • (2007) Nat. Comput. , vol.6 , pp. 467-484
    • Banks, A.1    Vincent, J.2    Anyakoha, C.3
  • 33
    • 24344505520 scopus 로고    scopus 로고
    • A MOPSO algorithm based exclusively on Pareto dominance concepts
    • C. Coello Coello, A. Hernández Aguirre, E. Zitzler, Springer Berlin, Heidelberg
    • J.E. Alvarez-Benitez, R.M. Everson, and J.E. Fieldsend A MOPSO algorithm based exclusively on Pareto dominance concepts C. Coello Coello, A. Hernández Aguirre, E. Zitzler, Evol. Multi-Criterion Optim. 2005 Springer Berlin, Heidelberg 459 473
    • (2005) Evol. Multi-Criterion Optim. , pp. 459-473
    • Alvarez-Benitez, J.E.1    Everson, R.M.2    Fieldsend, J.E.3
  • 34
    • 63149128570 scopus 로고    scopus 로고
    • Particle swarm optimization with preference order ranking for multi-objective optimization
    • Y. Wang, and Y. Yang Particle swarm optimization with preference order ranking for multi-objective optimization Inf. Sci. (NY) 179 2009 1944 1959
    • (2009) Inf. Sci. (NY) , vol.179 , pp. 1944-1959
    • Wang, Y.1    Yang, Y.2
  • 35
    • 70349843699 scopus 로고    scopus 로고
    • A competitive and cooperative co-evolutionary approach to multi-objective particle swarm optimization algorithm design
    • C.K. Goh, K.C. Tan, D.S. Liu, and S.C. Chiam A competitive and cooperative co-evolutionary approach to multi-objective particle swarm optimization algorithm design Eur. J. Oper. Res. 202 2010 42 54
    • (2010) Eur. J. Oper. Res. , vol.202 , pp. 42-54
    • Goh, C.K.1    Tan, K.C.2    Liu, D.S.3    Chiam, S.C.4
  • 37
    • 32644449879 scopus 로고    scopus 로고
    • Comprehensive learning particle swarm optimizer for solving multiobjective optimization problems
    • V.L. Huang, P.N. Suganthan, and J.J. Liang Comprehensive learning particle swarm optimizer for solving multiobjective optimization problems Int. J. Intell. Syst. 21 2006 209 226
    • (2006) Int. J. Intell. Syst. , vol.21 , pp. 209-226
    • Huang, V.L.1    Suganthan, P.N.2    Liang, J.J.3
  • 38
    • 34548269905 scopus 로고    scopus 로고
    • Multi-objective particle swarm optimization with time variant inertia and acceleration coefficients
    • P.K. Tripathi, S. Bandyopadhyay, and S.K. Pal Multi-objective particle swarm optimization with time variant inertia and acceleration coefficients Inf. Sci. (NY) 177 2007 5033 5049
    • (2007) Inf. Sci. (NY) , vol.177 , pp. 5033-5049
    • Tripathi, P.K.1    Bandyopadhyay, S.2    Pal, S.K.3
  • 39
    • 67650697965 scopus 로고    scopus 로고
    • Dynamic multiple swarms in multiobjective particle swarm optimization
    • G.G. Yen, and W.F. Leong Dynamic multiple swarms in multiobjective particle swarm optimization IEEE Trans. Syst. Man, Cybern., A: Syst. Humans 39 2009 890 911
    • (2009) IEEE Trans. Syst. Man, Cybern., A: Syst. Humans , vol.39 , pp. 890-911
    • Yen, G.G.1    Leong, W.F.2
  • 42
    • 84863726256 scopus 로고    scopus 로고
    • An intelligent augmentation of particle swarm optimization with multiple adaptive methods
    • M. Hu, T. Wu, and J.D. Weir An intelligent augmentation of particle swarm optimization with multiple adaptive methods Inf. Sci. (NY) 213 2012 68 83
    • (2012) Inf. Sci. (NY) , vol.213 , pp. 68-83
    • Hu, M.1    Wu, T.2    Weir, J.D.3
  • 43
    • 78650319923 scopus 로고    scopus 로고
    • A hybrid particle swarm-gradient algorithm for global structural optimization
    • V. Plevris, and M. Papadrakakis A hybrid particle swarm-gradient algorithm for global structural optimization Comput. Civ. Infrastruct. Eng. 26 2011 48 68
    • (2011) Comput. Civ. Infrastruct. Eng. , vol.26 , pp. 48-68
    • Plevris, V.1    Papadrakakis, M.2
  • 44
    • 84909992542 scopus 로고    scopus 로고
    • Design of a decentralized framework for collaborative product design using memetic algorithms
    • published online January 22
    • F. Li, T. Wu, and M. Hu Design of a decentralized framework for collaborative product design using memetic algorithms Optim. Eng 2013 10.1007/s11081-012-9210-6 published online January 22
    • (2013) Optim. Eng
    • Li, F.1    Wu, T.2    Hu, M.3
  • 45
    • 0031212567 scopus 로고    scopus 로고
    • A closer look at drawbacks of minimizing weighted sums of objectives for Pareto set generation in multicriteria optimization problems
    • I. Das, and J.E. Dennis A closer look at drawbacks of minimizing weighted sums of objectives for Pareto set generation in multicriteria optimization problems Struct. Multi. Optim. 14 1997 63 69
    • (1997) Struct. Multi. Optim. , vol.14 , pp. 63-69
    • Das, I.1    Dennis, J.E.2
  • 46
    • 2442535151 scopus 로고    scopus 로고
    • Survey of multi-objective optimization methods for engineering
    • R.T. Marler, and J.S. Arora Survey of multi-objective optimization methods for engineering Struct. Multi. Optim. 26 2004 369 395
    • (2004) Struct. Multi. Optim. , vol.26 , pp. 369-395
    • Marler, R.T.1    Arora, J.S.2
  • 47
    • 78751613509 scopus 로고    scopus 로고
    • Simulated annealing algorithm with adaptive neighborhood
    • X. Zhao Simulated annealing algorithm with adaptive neighborhood Appl. Soft Comput. 11 2011 1827 1836
    • (2011) Appl. Soft Comput. , vol.11 , pp. 1827-1836
    • Zhao, X.1
  • 48
    • 0026839090 scopus 로고
    • Multivariate stochastic approximation using a simultaneous perturbation gradient approximation
    • J.C. Spall Multivariate stochastic approximation using a simultaneous perturbation gradient approximation IEEE Trans. Autom. Control 37 1992 332 341
    • (1992) IEEE Trans. Autom. Control , vol.37 , pp. 332-341
    • Spall, J.C.1
  • 49
    • 84942162725 scopus 로고    scopus 로고
    • Strategies for finding good local guides in multi-objective particle swarm optimization (MOPSO)
    • S. Mostaghim, and J. Teich Strategies for finding good local guides in multi-objective particle swarm optimization (MOPSO) Proc. IEEE Swarm Intell. Symp. 2003 2003 26 33
    • (2003) Proc. IEEE Swarm Intell. Symp. 2003 , pp. 26-33
    • Mostaghim, S.1    Teich, J.2
  • 50
    • 0036715683 scopus 로고    scopus 로고
    • Combining convergence and diversity in evolutionary multiobjective optimization
    • M. Laumanns, L. Thiele, K. Deb, and E. Zitzler Combining convergence and diversity in evolutionary multiobjective optimization Evol. Comput. 10 2002 263 282
    • (2002) Evol. Comput. , vol.10 , pp. 263-282
    • Laumanns, M.1    Thiele, L.2    Deb, K.3    Zitzler, E.4
  • 51
    • 77749286234 scopus 로고    scopus 로고
    • Computing gap free pareto front approximations with stochastic search algorithms
    • O. Schütze, M. Laumanns, E. Tantar, C.A.C. Coello, and E.-G. Talbi Computing gap free pareto front approximations with stochastic search algorithms Evol. Comput. 18 2010 65 96
    • (2010) Evol. Comput. , vol.18 , pp. 65-96
    • Schütze, O.1    Laumanns, M.2    Tantar, E.3    Coello, C.A.C.4    Talbi, E.-G.5
  • 52
  • 53
    • 84901406129 scopus 로고    scopus 로고
    • The role of e-dominance in multi objective particle swarm optimization methods
    • Canberra, Australia
    • S. Mostaghim, and J. Teich The role of e-dominance in multi objective particle swarm optimization methods Congr. Evol. Comput. 2003 Canberra, Australia 2003 1764 1771
    • (2003) Congr. Evol. Comput. 2003 , pp. 1764-1771
    • Mostaghim, S.1    Teich, J.2
  • 54
    • 27144464848 scopus 로고    scopus 로고
    • Particle swarm optimization and fitness sharing to solve multi-objective optimization problems
    • M. Salazar-Lechuga, and J.E. Rowe Particle swarm optimization and fitness sharing to solve multi-objective optimization problems Congr. Evol. Comput. 2005. 2005 1204 1211
    • (2005) Congr. Evol. Comput. 2005. , pp. 1204-1211
    • Salazar-Lechuga, M.1    Rowe, J.E.2
  • 55
    • 32444449874 scopus 로고    scopus 로고
    • An effective use of crowding distance in multiobjective particle swarm optimization
    • C.R. Raquel, and P.C. Naval Jr. An effective use of crowding distance in multiobjective particle swarm optimization Proc. 2005 Conf. Genet. Evol. Comput. 2005 257 264
    • (2005) Proc. 2005 Conf. Genet. Evol. Comput. , pp. 257-264
    • Raquel, C.R.1    Naval, P.C.2
  • 57
    • 56449111891 scopus 로고    scopus 로고
    • Solving three-objective optimization problems using a new hybrid cellular genetic algorithm
    • G. Rudolph, T. Jansen, S. Lucas, C. Poloni, N. Beume, Springer Berlin, Heidelberg
    • J. Durillo, A. Nebro, F. Luna, and E. Alba Solving three-objective optimization problems using a new hybrid cellular genetic algorithm G. Rudolph, T. Jansen, S. Lucas, C. Poloni, N. Beume, Parallel Probl. Solving from Nat. - PPSN X SE - 66 2008 Springer Berlin, Heidelberg 661 670
    • (2008) Parallel Probl. Solving from Nat. - PPSN X SE - 66 , pp. 661-670
    • Durillo, J.1    Nebro, A.2    Luna, F.3    Alba, E.4
  • 60
    • 84885066958 scopus 로고    scopus 로고
    • A study of the combination of variation operators in the NSGA-II algorithm
    • C. Bielza, A. Salmerón, A. Alonso-Betanzos, J.I. Hidalgo, L. Martínez, A. Troncoso, Springer Berlin, Heidelberg
    • A. Nebro, J. Durillo, M. Machín, C. Coello Coello, and B. Dorronsoro A study of the combination of variation operators in the NSGA-II algorithm C. Bielza, A. Salmerón, A. Alonso-Betanzos, J.I. Hidalgo, L. Martínez, A. Troncoso, Adv. Artif. Intell. SE - 28 2013 Springer Berlin, Heidelberg 269 278
    • (2013) Adv. Artif. Intell. SE - 28 , pp. 269-278
    • Nebro, A.1    Durillo, J.2    Machín, M.3    Coello Coello, C.4    Dorronsoro, B.5
  • 61
    • 24344480582 scopus 로고    scopus 로고
    • Improving PSO-based multi-objective optimization using crowding, mutation and -dominance
    • C. Coello Coello, A. Hernández Aguirre, E. Zitzler, Springer Berlin, Heidelberg
    • M. Reyes-Sierra, and C.A. Coello Coello Improving PSO-based multi-objective optimization using crowding, mutation and -dominance C. Coello Coello, A. Hernández Aguirre, E. Zitzler, Evol. Multi-Criterion Optim. 2005 Springer Berlin, Heidelberg 505 519
    • (2005) Evol. Multi-Criterion Optim. , pp. 505-519
    • Reyes-Sierra, M.1    Coello Coello, C.A.2
  • 63
    • 79960890945 scopus 로고    scopus 로고
    • JMetal: A Java framework for multi-objective optimization
    • J.J. Durillo, and A.J. Nebro jMetal: a Java framework for multi-objective optimization Adv. Eng. Softw. 42 2011 760 771
    • (2011) Adv. Eng. Softw. , vol.42 , pp. 760-771
    • Durillo, J.J.1    Nebro, A.J.2
  • 64
    • 70349270458 scopus 로고    scopus 로고
    • A study on the use of non-parametric tests for analyzing the evolutionary algorithms' behaviour: A case study on the CEC'2005 special session on real parameter optimization
    • S. García, D. Molina, M. Lozano, and F. Herrera A study on the use of non-parametric tests for analyzing the evolutionary algorithms' behaviour: a case study on the CEC'2005 special session on real parameter optimization J. Heuristics 15 2009 617 644
    • (2009) J. Heuristics , vol.15 , pp. 617-644
    • García, S.1    Molina, D.2    Lozano, M.3    Herrera, F.4
  • 65
    • 34548108555 scopus 로고    scopus 로고
    • MOEA/D. A multiobjective evolutionary algorithm based on decomposition
    • Q. Zhang, and H. Li MOEA/D. A multiobjective evolutionary algorithm based on decomposition IEEE Trans. Evol. Comput. 11 2007 712 731
    • (2007) IEEE Trans. Evol. Comput. , vol.11 , pp. 712-731
    • Zhang, Q.1    Li, H.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.