메뉴 건너뛰기




Volumn 38, Issue 7, 2014, Pages 638-651

Functional logistic regression approach to detecting gene by longitudinal environmental exposure interaction in a case-control study

Author keywords

Functional data analysis; Gene environment interaction; GWAS; Longitudinal exposure; Measurement error

Indexed keywords

ADOLESCENT; ADULT; AGE DISTRIBUTION; ARTICLE; BODY MASS; CANCER RISK; CASE CONTROL STUDY; CONTROLLED STUDY; ENVIRONMENTAL EXPOSURE; FUNCTIONAL LOGISTIC REGRESSION ANALYSIS; GENETIC ANALYSIS; GENETIC ASSOCIATION; GENOTYPE ENVIRONMENT INTERACTION; HEREDITY; HUMAN; LOGISTIC REGRESSION ANALYSIS; LONGITUDINAL STUDY; MEASUREMENT ERROR; OBSERVATIONAL STUDY; PANCREAS CANCER; PRINCIPAL COMPONENT ANALYSIS; SINGLE NUCLEOTIDE POLYMORPHISM; WEIGHT GAIN; BIOLOGICAL MODEL; COMPUTER SIMULATION; GENETIC PREDISPOSITION; GENETICS; MIDDLE AGED; PANCREAS TUMOR; STATISTICAL MODEL;

EID: 84908283050     PISSN: 07410395     EISSN: 10982272     Source Type: Journal    
DOI: 10.1002/gepi.21852     Document Type: Article
Times cited : (18)

References (60)
  • 1
    • 0003964363 scopus 로고    scopus 로고
    • Atlanta: American Cancer Society
    • American Cancer Society. 2013. Cancer Facts & Figures 2013. Atlanta: American Cancer Society.
    • (2013) Cancer Facts & Figures 2013
  • 5
    • 84862857808 scopus 로고    scopus 로고
    • A Bayesian semiparametric approach for incorporating longitudinal information on exposure history for inference in case-control studies
    • Bhadra D, Daniels MJ, Kim S, Ghosh M, Mukherjee B. 2012. A Bayesian semiparametric approach for incorporating longitudinal information on exposure history for inference in case-control studies. Biometrics 68(2):361-370.
    • (2012) Biometrics , vol.68 , Issue.2 , pp. 361-370
    • Bhadra, D.1    Daniels, M.J.2    Kim, S.3    Ghosh, M.4    Mukherjee, B.5
  • 7
    • 78650123270 scopus 로고    scopus 로고
    • Permutation and parametric bootstrap tests for gene-gene and gene-environment interactions
    • Buzkova P, Lumley T, Rice K. 2011. Permutation and parametric bootstrap tests for gene-gene and gene-environment interactions. Ann Hum Genet 75(1):36-45.
    • (2011) Ann Hum Genet , vol.75 , Issue.1 , pp. 36-45
    • Buzkova, P.1    Lumley, T.2    Rice, K.3
  • 9
    • 0025793898 scopus 로고
    • Long-term memory of body weight and past weight satisfaction: a longitudinal follow-up study
    • Casey VA, Dwyer JT, Berkey CS, Coleman KA, Gardner J, Valadian I. 1991. Long-term memory of body weight and past weight satisfaction: a longitudinal follow-up study. Am J Clin Nutr 53(6):1493-1498.
    • (1991) Am J Clin Nutr , vol.53 , Issue.6 , pp. 1493-1498
    • Casey, V.A.1    Dwyer, J.T.2    Berkey, C.S.3    Coleman, K.A.4    Gardner, J.5    Valadian, I.6
  • 10
    • 84890050671 scopus 로고    scopus 로고
    • Childhood height and birth weight in relation to future prostate cancer risk: a cohort study based on the copenhagen school health records register
    • Cook MB, Gamborg M, Aarestrup J, Sorensen TI, Baker JL. 2013. Childhood height and birth weight in relation to future prostate cancer risk: a cohort study based on the copenhagen school health records register. Cancer Epidemiol Biomarkers Prev 22(12):2232-2240.
    • (2013) Cancer Epidemiol Biomarkers Prev , vol.22 , Issue.12 , pp. 2232-2240
    • Cook, M.B.1    Gamborg, M.2    Aarestrup, J.3    Sorensen, T.I.4    Baker, J.L.5
  • 11
    • 84856155219 scopus 로고    scopus 로고
    • Gene-environment interactions in genome-wide association studies: a comparative study of tests applied to empirical studies of type 2 diabetes
    • Cornelis MC, Tchetgen EJ, Liang L, Qi L, Chatterjee N, Hu FB, Kraft P. 2012. Gene-environment interactions in genome-wide association studies: a comparative study of tests applied to empirical studies of type 2 diabetes. Am J Epidemiol 175(3):191-202.
    • (2012) Am J Epidemiol , vol.175 , Issue.3 , pp. 191-202
    • Cornelis, M.C.1    Tchetgen, E.J.2    Liang, L.3    Qi, L.4    Chatterjee, N.5    Hu, F.B.6    Kraft, P.7
  • 14
    • 84881611825 scopus 로고    scopus 로고
    • Finding novel genes by testing G x E interactions in a genome-wide association study
    • Gauderman WJ, Zhang P, Morrison JL, Lewinger JP. 2013. Finding novel genes by testing G x E interactions in a genome-wide association study. Genet Epidemiol 37(6):603-13.
    • (2013) Genet Epidemiol , vol.37 , Issue.6 , pp. 603-613
    • Gauderman, W.J.1    Zhang, P.2    Morrison, J.L.3    Lewinger, J.P.4
  • 18
    • 84867614472 scopus 로고    scopus 로고
    • Powerful cocktail methods for detecting genome-wide gene-environment interaction
    • Hsu L, Jiao S, Dai JY, Hutter C, Peters U, Kooperberg C. 2012. Powerful cocktail methods for detecting genome-wide gene-environment interaction. Genet Epidemiol 36(3):183-194.
    • (2012) Genet Epidemiol , vol.36 , Issue.3 , pp. 183-194
    • Hsu, L.1    Jiao, S.2    Dai, J.Y.3    Hutter, C.4    Peters, U.5    Kooperberg, C.6
  • 19
    • 84885843711 scopus 로고    scopus 로고
    • Gene-Environment Interactions in cancer epidemiology: A National Cancer Institute Think Tank Report
    • Hutter CM, Mechanic LE, Chatterjee N, Kraft P, Gillanders EM. 2013. Gene-Environment Interactions in cancer epidemiology: A National Cancer Institute Think Tank Report. Genet Epidemiol 37(7):643-657.
    • (2013) Genet Epidemiol , vol.37 , Issue.7 , pp. 643-657
    • Hutter, C.M.1    Mechanic, L.E.2    Chatterjee, N.3    Kraft, P.4    Gillanders, E.M.5
  • 22
    • 84881609928 scopus 로고    scopus 로고
    • Novel likelihood ratio tests for screening gene-gene and gene-environment interactions with unbalanced repeated-measures data
    • Ko YA, Saha-Chaudhuri P, Park SK, Vokonas PS, Mukherjee B. 2013. Novel likelihood ratio tests for screening gene-gene and gene-environment interactions with unbalanced repeated-measures data. Genet Epidemiol 37(6):581-591.
    • (2013) Genet Epidemiol , vol.37 , Issue.6 , pp. 581-591
    • Ko, Y.A.1    Saha-Chaudhuri, P.2    Park, S.K.3    Vokonas, P.S.4    Mukherjee, B.5
  • 23
    • 42249099044 scopus 로고    scopus 로고
    • Increasing the power of identifying gene x gene interactions in genome-wide association studies
    • Kooperberg C, Leblanc M. 2008. Increasing the power of identifying gene x gene interactions in genome-wide association studies. Genet Epidemiol 32(3):255-263.
    • (2008) Genet Epidemiol , vol.32 , Issue.3 , pp. 255-263
    • Kooperberg, C.1    Leblanc, M.2
  • 24
    • 30344444303 scopus 로고    scopus 로고
    • Classification using functional data analysis for temporal gene expression data
    • Leng X, Muller HG. 2006. Classification using functional data analysis for temporal gene expression data. Bioinformatics 22(1):68-76.
    • (2006) Bioinformatics , vol.22 , Issue.1 , pp. 68-76
    • Leng, X.1    Muller, H.G.2
  • 25
    • 67649227786 scopus 로고    scopus 로고
    • Body mass index and risk, age of onset, and survival in patients with pancreatic cancer
    • Li D, Morris JS, Liu J, Hassan MM, Day RS, Bondy ML, Abbruzzese JL. 2009. Body mass index and risk, age of onset, and survival in patients with pancreatic cancer. JAMA 301(24):2553-2562.
    • (2009) JAMA , vol.301 , Issue.24 , pp. 2553-2562
    • Li, D.1    Morris, J.S.2    Liu, J.3    Hassan, M.M.4    Day, R.S.5    Bondy, M.L.6    Abbruzzese, J.L.7
  • 26
    • 78649440047 scopus 로고    scopus 로고
    • Generalized functional linear models with semiparametric single-Index interactions
    • Li Y, Wang N, Carroll RJ. 2010. Generalized functional linear models with semiparametric single-Index interactions. J Am Stat Assoc 105(490):621-633.
    • (2010) J Am Stat Assoc , vol.105 , Issue.490 , pp. 621-633
    • Li, Y.1    Wang, N.2    Carroll, R.J.3
  • 27
    • 84902951950 scopus 로고    scopus 로고
    • The role of environmental heterogeneity in meta-analysis of gene-environment interactions with quantitative traits
    • Li S, Mukherjee B, Taylor JM, Rice KM, Wen X, Rice JD, Stringham HM, Boehnke M. 2014. The role of environmental heterogeneity in meta-analysis of gene-environment interactions with quantitative traits. Genet Epidemiol 38(5):416-429.
    • (2014) Genet Epidemiol , vol.38 , Issue.5 , pp. 416-429
    • Li, S.1    Mukherjee, B.2    Taylor, J.M.3    Rice, K.M.4    Wen, X.5    Rice, J.D.6    Stringham, H.M.7    Boehnke, M.8
  • 28
    • 79959865244 scopus 로고    scopus 로고
    • Association studies for next-generation sequencing
    • Luo L, Boerwinkle E, Xiong M. 2011. Association studies for next-generation sequencing. Genome Res 21(7):1099-1108.
    • (2011) Genome Res , vol.21 , Issue.7 , pp. 1099-1108
    • Luo, L.1    Boerwinkle, E.2    Xiong, M.3
  • 29
    • 84880920122 scopus 로고    scopus 로고
    • Bringing genome-wide association findings into clinical use
    • Manolio TA. 2013. Bringing genome-wide association findings into clinical use. Nat Rev Genet 14(8):549-558.
    • (2013) Nat Rev Genet , vol.14 , Issue.8 , pp. 549-558
    • Manolio, T.A.1
  • 31
    • 49749089301 scopus 로고    scopus 로고
    • Exploiting gene-environment independence for analysis of case-control studies: an empirical Bayes-type shrinkage estimator to trade-off between bias and efficiency
    • Mukherjee B, Chatterjee N. 2008. Exploiting gene-environment independence for analysis of case-control studies: an empirical Bayes-type shrinkage estimator to trade-off between bias and efficiency. Biometrics 64(3):685-694.
    • (2008) Biometrics , vol.64 , Issue.3 , pp. 685-694
    • Mukherjee, B.1    Chatterjee, N.2
  • 32
    • 84856181067 scopus 로고    scopus 로고
    • Testing gene-environment interaction in large-scale case-control association studies: possible choices and comparisons
    • Mukherjee B, Ahn J, Gruber SB, Chatterjee N. 2012a. Testing gene-environment interaction in large-scale case-control association studies: possible choices and comparisons. Am J Epidemiol 175(3):177-190.
    • (2012) Am J Epidemiol , vol.175 , Issue.3 , pp. 177-190
    • Mukherjee, B.1    Ahn, J.2    Gruber, S.B.3    Chatterjee, N.4
  • 33
    • 84866182623 scopus 로고    scopus 로고
    • Principal interactions analysis for repeated measures data: application to gene-gene and gene-environment interactions
    • Mukherjee B, Ko YA, Vanderweele T, Roy A, Park SK, Chen J. 2012b. Principal interactions analysis for repeated measures data: application to gene-gene and gene-environment interactions. Statist Med 31(22):2531-2551.
    • (2012) Statist Med , vol.31 , Issue.22 , pp. 2531-2551
    • Mukherjee, B.1    Ko, Y.A.2    Vanderweele, T.3    Roy, A.4    Park, S.K.5    Chen, J.6
  • 34
    • 85057445672 scopus 로고    scopus 로고
    • Functional Modeling of Longitudinal Data
    • Fitzmaurice G, Davidian M, Verbeke G, Molenberghs G, editors. New York: Wiley
    • Müller H-G. 2009. Functional Modeling of Longitudinal Data. In: Fitzmaurice G, Davidian M, Verbeke G, Molenberghs G, editors. Longitudinal Data Analysis (Handbooks of Modern Statistical Methods). New York: Wiley, pp. 223-252.
    • (2009) Longitudinal Data Analysis (Handbooks of Modern Statistical Methods) , pp. 223-252
    • Müller, H.-G.1
  • 35
    • 19744372814 scopus 로고    scopus 로고
    • Generalized functional linear models
    • Müller H-G, Stadtmüller, U. 2005. Generalized functional linear models. Ann Statist 33(2):774-805.
    • (2005) Ann Statist , vol.33 , Issue.2 , pp. 774-805
    • Müller, H.-G.1    Stadtmüller, U.2
  • 36
    • 58449107994 scopus 로고    scopus 로고
    • Gene-environment interaction in genome-wide association studies
    • Murcray CE, Lewinger JP, Gauderman WJ. 2009. Gene-environment interaction in genome-wide association studies. Am J Epidemiol 169(2):219-226.
    • (2009) Am J Epidemiol , vol.169 , Issue.2 , pp. 219-226
    • Murcray, C.E.1    Lewinger, J.P.2    Gauderman, W.J.3
  • 37
    • 79952494521 scopus 로고    scopus 로고
    • Sample size requirements to detect gene-environment interactions in genome-wide association studies
    • Murcray CE, Lewinger JP, Conti DV, Thomas DC, Gauderman WJ. 2011. Sample size requirements to detect gene-environment interactions in genome-wide association studies. Genet Epidemiol 35(3):201-210.
    • (2011) Genet Epidemiol , vol.35 , Issue.3 , pp. 201-210
    • Murcray, C.E.1    Lewinger, J.P.2    Conti, D.V.3    Thomas, D.C.4    Gauderman, W.J.5
  • 38
    • 69949121284 scopus 로고    scopus 로고
    • Asymptotic tests of association with multiple SNPs in linkage disequilibrium
    • Pan W. 2009. Asymptotic tests of association with multiple SNPs in linkage disequilibrium. Genet Epidemiol 33(6):497-507.
    • (2009) Genet Epidemiol , vol.33 , Issue.6 , pp. 497-507
    • Pan, W.1
  • 39
    • 79959550753 scopus 로고    scopus 로고
    • Relationship between genomic distance-based regression and kernel machine regression for multi-marker association testing
    • Pan W. 2011. Relationship between genomic distance-based regression and kernel machine regression for multi-marker association testing. Genet Epidemiol 35:211-216.
    • (2011) Genet Epidemiol , vol.35 , pp. 211-216
    • Pan, W.1
  • 40
    • 80155210230 scopus 로고    scopus 로고
    • Adaptive tests for detecting gene-gene and gene-environment interactions
    • Pan W, Basu S, Shen X. 2011. Adaptive tests for detecting gene-gene and gene-environment interactions. Hum Hered 72(2):98-109.
    • (2011) Hum Hered , vol.72 , Issue.2 , pp. 98-109
    • Pan, W.1    Basu, S.2    Shen, X.3
  • 41
    • 0032885762 scopus 로고    scopus 로고
    • Prediction using partly conditional time-varying coefficients regression models
    • Pepe MS, Heagerty P, Whitaker R. 1999. Prediction using partly conditional time-varying coefficients regression models. Biometrics 55(3):944-950.
    • (1999) Biometrics , vol.55 , Issue.3 , pp. 944-950
    • Pepe, M.S.1    Heagerty, P.2    Whitaker, R.3
  • 43
    • 0018671320 scopus 로고
    • Logistic disease incidence models and case-control studies
    • Prentice RL, Pyke R. 1979. Logistic disease incidence models and case-control studies. Biometrika 66(3):403-411.
    • (1979) Biometrika , vol.66 , Issue.3 , pp. 403-411
    • Prentice, R.L.1    Pyke, R.2
  • 45
    • 79952324913 scopus 로고    scopus 로고
    • Statistical methods to study timing of vulnerability with sparsely sampled data on environmental toxicants
    • Sanchez BN, Hu H, Litman HJ, Tellez-Rojo MM. 2011. Statistical methods to study timing of vulnerability with sparsely sampled data on environmental toxicants. Environ Health Persp 119(3):409-415.
    • (2011) Environ Health Persp , vol.119 , Issue.3 , pp. 409-415
    • Sanchez, B.N.1    Hu, H.2    Litman, H.J.3    Tellez-Rojo, M.M.4
  • 46
    • 84897093430 scopus 로고    scopus 로고
    • An introduction with medical applications to functional data analysis
    • Sorensen H, Goldsmith J, Sangalli LM. 2013. An introduction with medical applications to functional data analysis. Stat Med 32(30):5222-5240.
    • (2013) Stat Med , vol.32 , Issue.30 , pp. 5222-5240
    • Sorensen, H.1    Goldsmith, J.2    Sangalli, L.M.3
  • 48
    • 0025633669 scopus 로고
    • Accuracy of current, 4-year, and 28-year self-reported body weight in an elderly population
    • Stevens J, Keil JE, Waid LR, Gazes PC. 1990. Accuracy of current, 4-year, and 28-year self-reported body weight in an elderly population. Am J Epidemiol 132(6):1156-1163.
    • (1990) Am J Epidemiol , vol.132 , Issue.6 , pp. 1156-1163
    • Stevens, J.1    Keil, J.E.2    Waid, L.R.3    Gazes, P.C.4
  • 49
    • 84875421047 scopus 로고    scopus 로고
    • Prostate cancer: is it time to expand the research focus to early-life exposures?
    • Sutcliffe S, Colditz GA. 2013. Prostate cancer: is it time to expand the research focus to early-life exposures? Nat Rev Cancer 13(3):208-518.
    • (2013) Nat Rev Cancer , vol.13 , Issue.3 , pp. 208-518
    • Sutcliffe, S.1    Colditz, G.A.2
  • 50
    • 79955752416 scopus 로고    scopus 로고
    • Body mass index and obesity- and diabetes-associated genotypes and risk for pancreatic cancer
    • Tang H, Dong X, Hassan M, Abbruzzese JL, Li D. 2011. Body mass index and obesity- and diabetes-associated genotypes and risk for pancreatic cancer. Cancer Epidemiol Biomarkers Prev 20(5):779-792.
    • (2011) Cancer Epidemiol Biomarkers Prev , vol.20 , Issue.5 , pp. 779-792
    • Tang, H.1    Dong, X.2    Hassan, M.3    Abbruzzese, J.L.4    Li, D.5
  • 51
    • 84902002285 scopus 로고    scopus 로고
    • Axonal guidance signaling pathway interacting with smoking in modifying the risk of pancreatic cancer: a gene and pathway-based interaction analysis of GWAS data
    • Tang H, Wei P, Duell EJ, Risch HA, Olson SH, Bueno-de-Mesquita HB, Gallinger S, Holly EA, Petersen GM, Bracci PM and others. 2014a. Axonal guidance signaling pathway interacting with smoking in modifying the risk of pancreatic cancer: a gene and pathway-based interaction analysis of GWAS data. Carcinogenesis 35:1039-1045.
    • (2014) Carcinogenesis , vol.35 , pp. 1039-1045
    • Tang, H.1    Wei, P.2    Duell, E.J.3    Risch, H.A.4    Olson, S.H.5    De-Mesquita, B.H.B.6    Gallinger, S.7    Holly, E.A.8    Petersen, G.M.9    Bracci, P.M.10
  • 53
    • 79951577537 scopus 로고    scopus 로고
    • On the robustness of tests of genetic associations incorporating gene-environment interaction when the environmental exposure is misspecified
    • Tchetgen Tchetgen EJ, Kraft P. 2011. On the robustness of tests of genetic associations incorporating gene-environment interaction when the environmental exposure is misspecified. Epidemiology 22(2):257-261.
    • (2011) Epidemiology , vol.22 , Issue.2 , pp. 257-261
    • Tchetgen Tchetgen, E.J.1    Kraft, P.2
  • 54
    • 77949772292 scopus 로고    scopus 로고
    • Gene-environment-wide association studies: emerging approaches
    • Thomas D. 2010. Gene-environment-wide association studies: emerging approaches. Nat Rev Genet 11(4):259-272.
    • (2010) Nat Rev Genet , vol.11 , Issue.4 , pp. 259-272
    • Thomas, D.1
  • 56
    • 84867125326 scopus 로고    scopus 로고
    • Insights into pancreatic cancer etiology from pathway analysis of genome-wide association study data
    • Wei P, Tang H, Li D. 2012. Insights into pancreatic cancer etiology from pathway analysis of genome-wide association study data. PLoS ONE 7(10):e46887.
    • (2012) PLoS ONE , vol.7 , Issue.10 , pp. e46887
    • Wei, P.1    Tang, H.2    Li, D.3
  • 58
    • 84866919001 scopus 로고    scopus 로고
    • Genome-wide association analyses of esophageal squamous cell carcinoma in Chinese identify multiple susceptibility loci and gene-environment interactions
    • Wu C, Kraft P, Zhai K, Chang J, Wang Z, Li Y, Hu Z, He Z, Jia W, Abnet CC and others. 2012. Genome-wide association analyses of esophageal squamous cell carcinoma in Chinese identify multiple susceptibility loci and gene-environment interactions. Nat Genet 44(10):1090-1097.
    • (2012) Nat Genet , vol.44 , Issue.10 , pp. 1090-1097
    • Wu, C.1    Kraft, P.2    Zhai, K.3    Chang, J.4    Wang, Z.5    Li, Y.6    Hu, Z.7    He, Z.8    Jia, W.9    Abnet, C.C.10
  • 59
    • 19744375466 scopus 로고    scopus 로고
    • Functional data analysis for sparse longitudinal data
    • Yao F, Müller HG, Wang JL. 2005. Functional data analysis for sparse longitudinal data. J Am Stat Assoc 100:577-590.
    • (2005) J Am Stat Assoc , vol.100 , pp. 577-590
    • Yao, F.1    Müller, H.G.2    Wang, J.L.3
  • 60
    • 84856405512 scopus 로고    scopus 로고
    • The mystery of missing heritability: genetic interactions create phantom heritability
    • Zuk O, Hechter E, Sunyaev SR, Lander ES. 2012. The mystery of missing heritability: genetic interactions create phantom heritability. Proc Natl Acad Sci USA 109(4):1193-1198.
    • (2012) Proc Natl Acad Sci USA , vol.109 , Issue.4 , pp. 1193-1198
    • Zuk, O.1    Hechter, E.2    Sunyaev, S.R.3    Lander, E.S.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.