-
1
-
-
84908274658
-
-
Supplement to “Variable selection for BART: An application to gene regulation.”
-
BLEICH, J., KAPELNER, A., GEORGE, E. and Jensen S. (2014). Supplement to “Variable selection for BART: An application to gene regulation.” DOI:10.1214/14-AOAS755SUPP.
-
(2014)
-
-
Bleich, J.1
Kapelner, A.2
George, E.3
Jensen, S.4
-
2
-
-
79951540621
-
Evolutionary stochastic search for Bayesian model exploration
-
MR2719668
-
BOTTOLO, L. and RICHARDSON, S. (2010). Evolutionary stochastic search for Bayesian model exploration. Bayesian Anal. 5 583-618. MR2719668
-
(2010)
Bayesian Anal
, vol.5
, pp. 583-618
-
-
Bottolo, L.1
Richardson, S.2
-
3
-
-
0035478854
-
Random forests
-
BREIMAN, L. (2001). Random forests. Machine Learning 45 5-32.
-
(2001)
Machine Learning
, vol.45
, pp. 5-32
-
-
Breiman, L.1
-
6
-
-
84870288271
-
BART: Bayesian additive regression trees
-
MR2758172
-
CHIPMAN, H. A., GEORGE, E. I. and MCCULLOCH, R. E. (2010). BART: Bayesian additive regression trees. Ann. Appl. Stat. 4 266-298. MR2758172
-
(2010)
Ann. Appl. Stat
, vol.4
, pp. 266-298
-
-
Chipman, H.A.1
George, E.I.2
McCulloch, R.E.3
-
8
-
-
30644464444
-
Gene selection and classification of microarray data using random forest
-
Díaz-uriarte, R. And Alvarez De Andrés, S. (2006). Gene selection and classification of microarray data using random forest. BMC Bioinformatics 7 1-13.
-
(2006)
BMC Bioinformatics
, vol.7
, pp. 1-13
-
-
Díaz-uriarte, R.A.A.D.A.1
-
9
-
-
0002432565
-
Multivariate adaptive regression splines
-
With discussion and a rejoinder by the author. MR1091842
-
FRIEDMAN, J. H. (1991). Multivariate adaptive regression splines. Ann. Statist. 19 1-141. With discussion and a rejoinder by the author. MR1091842
-
(1991)
Ann. Statist
, vol.19
, pp. 1-141
-
-
Friedman, J.H.1
-
10
-
-
0037186544
-
Stochastic gradient boosting. Comput
-
MR1884869
-
FRIEDMAN, J. H. (2002). Stochastic gradient boosting. Comput. Statist. Data Anal. 38 367-378. MR1884869
-
(2002)
Statist. Data Anal
, vol.38
, pp. 367-378
-
-
Friedman, J.H.1
-
11
-
-
77950537175
-
Regularization paths for generalized linear models via coordinate descent
-
FRIEDMAN, J. H., HASTIE, T. and TIBSHIRANI, R. (2010). Regularization paths for generalized linear models via coordinate descent. J. Stat. Softw. 33 1-22.
-
(2010)
J. Stat. Softw
, vol.33
, pp. 1-22
-
-
Friedman, J.H.1
Hastie, T.2
Tibshirani, R.3
-
12
-
-
0021518209
-
Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images
-
GEMAN, S. and GEMAN, D. (1984). Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE Trans. Pattern Anal. Mach. Intell. 6 721-741.
-
(1984)
IEEE Trans. Pattern Anal. Mach. Intell
, vol.6
, pp. 721-741
-
-
Geman, S.1
Geman, D.2
-
14
-
-
84876056744
-
Variable selection and sensitivity analysis using dynamic trees, with an application to computer code performance tuning
-
MR3086410
-
GRAMACY, R. B., TADDY, M. and WILD, S. M. (2013). Variable selection and sensitivity analysis using dynamic trees, with an application to computer code performance tuning. Ann. Appl. Stat. 7 51-80. MR3086410
-
(2013)
Ann. Appl. Stat
, vol.7
, pp. 51-80
-
-
Gramacy, R.B.1
Taddy, M.2
Wild, S.M.3
-
15
-
-
34147179823
-
Clustering of genes into regulons using integrated modeling—COGRIM
-
GUANG, C., JENSEN, S. T. and STOECKERT, C. J. (2007). Clustering of genes into regulons using integrated modeling—COGRIM. Genome Biol. 8 R4.
-
(2007)
Genome Biol
, vol.8
, pp. R4
-
-
Guang, C.1
Jensen, S.T.2
Stoeckert, C.J.3
-
16
-
-
71249130909
-
Bayesian lasso regression
-
MR2564494
-
HANS, C. (2009). Bayesian lasso regression. Biometrika 96 835-845. MR2564494
-
(2009)
Biometrika
, vol.96
, pp. 835-845
-
-
Hans, C.1
-
17
-
-
34250747348
-
Shotgun stochastic search for “large p” regression
-
MR2370849
-
HANS, C., DOBRA, A. and WEST, M. (2007). Shotgun stochastic search for “large p” regression. J. Amer. Statist. Assoc. 102 507-516. MR2370849
-
(2007)
J. Amer. Statist. Assoc
, vol.102
, pp. 507-516
-
-
Hans, C.1
Dobra, A.2
West, M.3
-
18
-
-
77956890234
-
Monte Carlo sampling methods using Markov chains and their applications
-
HASTINGS, H. K. (1970). Monte Carlo sampling methods using Markov chains and their applications. Biometrika 57 97-109.
-
(1970)
Biometrika
, vol.57
, pp. 97-109
-
-
Hastings, H.K.1
-
19
-
-
0017280570
-
The analysis and selection of variables in linear regression
-
MR0398008
-
HOCKING, R. R. (1976). The analysis and selection of variables in linear regression. Biometrics 32 1-49. MR0398008
-
(1976)
Biometrics
, vol.32
, pp. 1-49
-
-
Hocking, R.R.1
-
20
-
-
22944460748
-
Spike and slab variable selection: Frequentist and Bayesian strategies
-
MR2163158
-
ISHWARAN, H. and RAO, J. S. (2005). Spike and slab variable selection: Frequentist and Bayesian strategies. Ann. Statist. 33 730-773. MR2163158
-
(2005)
Ann. Statist
, vol.33
, pp. 730-773
-
-
Ishwaran, H.1
Rao, J.S.2
-
21
-
-
84908273395
-
-
Generalized ridge regression: Geometry and computational solutions when p is larger than n. Technical report
-
ISHWARAN, H. and RAO, J S. (2010). Generalized ridge regression: Geometry and computational solutions when p is larger than n. Technical report.
-
(2010)
-
-
Ishwaran, H.1
Rao, J.S.2
-
23
-
-
46949103774
-
Bayesian variable selection and data integration for biological regulatory networks
-
MR2415749
-
JENSEN, S. T., CHEN, G. and STOECKERT, C. J., JR. (2007). Bayesian variable selection and data integration for biological regulatory networks. Ann. Appl. Stat. 1 612-633. MR2415749
-
(2007)
Ann. Appl. Stat
, vol.1
, pp. 612-633
-
-
Jensen, S.T.1
Chen, G.2
Stoeckert, C.J.3
-
25
-
-
0037174671
-
Transcriptional regulatory networks in Saccharomyces cerevisiae
-
Lee, T. I., Rinaldi, N. J., Robert, F., odom, D. T., Bar-Joseph, Z., Gerber, G. K., Hannett, N. M., Harbison, C. T., Thompson, C. M., Simon, I., Zeitlinger, J., Jennings, E. G., Murray, H. L., Gordon, D. B., Ren, B., Wyrick, J. J., Tagne, J. B., Volkert, T. L., Fraenkel, E., Gifford, D. K. And Young, R. A. (2002). Transcriptional regulatory networks in Saccharomyces cerevisiae. Science 298 763-764.
-
(2002)
Science
, vol.298
, pp. 763-764
-
-
Lee, T.I.1
Rinaldi, N.J.2
Robert, F.3
Odom, D.T.4
Bar-Joseph, Z.5
Gerber, G.K.6
Hannett, N.M.7
Harbison, C.T.8
Thompson, C.M.9
Simon, I.10
Zeitlinger, J.11
Jennings, E.G.12
Murray, H.L.13
Gordon, D.B.14
Ren, B.15
Wyrick, J.J.16
Tagne, J.B.17
Volkert, T.L.18
Fraenkel, E.19
Gifford, D.K.A.Y.20
more..
-
26
-
-
78649419087
-
Bayesian variable selection in structured high-dimensional covariate spaces with applications in genomics
-
MR2752615
-
LI, F. and ZHANG, N. R. (2010). Bayesian variable selection in structured high-dimensional covariate spaces with applications in genomics. J. Amer. Statist. Assoc. 105 1202-1214. MR2752615
-
(2010)
J. Amer. Statist. Assoc
, vol.105
, pp. 1202-1214
-
-
Li, F.1
Zhang, N.R.2
-
27
-
-
0345040873
-
Classification and regression by random forest
-
LIAW, A. and WIENER, M. (2002). Classification and regression by random forest. R news 2 18-22
-
(2002)
R news
, vol.2
, pp. 18-22
-
-
Liaw, A.1
Wiener, M.2
-
29
-
-
0000130839
-
Bayesian variable selection in linear regression
-
MR0997578
-
MITCHELL, T. J. and BEAUCHAMP, J. J. (1988). Bayesian variable selection in linear regression. J. Amer. Statist. Assoc. 83 1023-1036. MR0997578
-
(1988)
J. Amer. Statist. Assoc
, vol.83
, pp. 1023-1036
-
-
Mitchell, T.J.1
Beauchamp, J.J.2
-
31
-
-
84987864133
-
EMVS: The EM approach to Bayesian variable selection
-
ROCKOVA, V. and GEORGE, E. I. (2014). EMVS: The EM approach to Bayesian variable selection. J. Amer. Statist. Assoc. 109 828-846.
-
(2014)
J. Amer. Statist. Assoc
, vol.109
, pp. 828-846
-
-
Rockova, V.1
George, E.I.2
-
32
-
-
79951528449
-
Variable selection for discriminant analysis with Markov random field priors for the analysis of microarray data
-
STINGO, F. and VANNUCCI, M. (2011). Variable selection for discriminant analysis with Markov random field priors for the analysis of microarray data. Bioinformatics 27 495-501
-
(2011)
Bioinformatics
, vol.27
, pp. 495-501
-
-
Stingo, F.1
Vannucci, M.2
-
34
-
-
0001287271
-
Regression shrinkage and selection via the lasso
-
MR1379242
-
TIBSHIRANI, R. (1996). Regression shrinkage and selection via the lasso. J. Roy. Statist. Soc. Ser. B 58267-288. MR1379242
-
(1996)
J. Roy. Statist. Soc. Ser. B
, pp. 58267-58288
-
-
Tibshirani, R.1
-
36
-
-
16244401458
-
Regularization and variable selection via the elastic net
-
MR2137327
-
ZOU, H. and HASTIE, T. (2005). Regularization and variable selection via the elastic net. J. R. Stat. Soc. Ser. B Stat. Methodol. 67 301-320. MR2137327
-
(2005)
J. R. Stat. Soc. Ser. B Stat. Methodol
, vol.67
, pp. 301-320
-
-
Zou, H.1
Hastie, T.2
|