메뉴 건너뛰기




Volumn 4, Issue , 2014, Pages 2803-2809

Sub-selective quantization for large-scale image search

Author keywords

[No Author keywords available]

Indexed keywords

IMAGE SEARCH;

EID: 84908207185     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (13)

References (30)
  • 1
    • 38749118638 scopus 로고    scopus 로고
    • Near-optimal hashing algorithms for approximate nearest neighbor in high dimensions
    • Andoni, A., and Indyk, P. 2006. Near-optimal hashing algorithms for approximate nearest neighbor in high dimensions. In Proc. FOCS.
    • (2006) Proc. FOCS
    • Andoni, A.1    Indyk, P.2
  • 3
    • 84887348338 scopus 로고    scopus 로고
    • Optimized product quantization for approximate nearest neighbor search
    • Ge, T.; He, K.; Ke, Q.; and Sun, J. 2013. Optimized product quantization for approximate nearest neighbor search. In Proc. CVPR.
    • (2013) Proc. CVPR
    • Ge, T.1    He, K.2    Ke, Q.3    Sun, J.4
  • 4
    • 84887601251 scopus 로고    scopus 로고
    • Iterative quantization: A procrustean approach to learning binary codes for large-scale image retrieval
    • Gong, Y.; Lazebnik, S.; Gordo, A.; and Perronnin, F. 2013. Iterative quantization: A procrustean approach to learning binary codes for large-scale image retrieval. IEEE Trans. Pattern Analysis and Machine Intelligence 35(12):2916- 2929.
    • (2013) IEEE Trans. Pattern Analysis and Machine Intelligence , vol.35 , Issue.12 , pp. 2916-2929
    • Gong, Y.1    Lazebnik, S.2    Gordo, A.3    Perronnin, F.4
  • 5
    • 33746600649 scopus 로고    scopus 로고
    • Reducing the dimensionality of data with neural networks
    • Hinton, G. E and Salakhutdinov, R. R. 2006. Reducing the dimensionality of data with neural networks. Science 313(5786):504-507.
    • (2006) Science , vol.313 , Issue.5786 , pp. 504-507
    • Hinton, G.E.1    Salakhutdinov, R.R.2
  • 8
    • 80052157848 scopus 로고    scopus 로고
    • Efficient mr image reconstruction for compressed mr imaging
    • Huang, J.; Zhang, S.; and Metaxas, D. 2011. Efficient mr image reconstruction for compressed mr imaging. Medical Image Analysis 15(5):670-679.
    • (2011) Medical Image Analysis , vol.15 , Issue.5 , pp. 670-679
    • Huang, J.1    Zhang, S.2    Metaxas, D.3
  • 10
    • 84877741460 scopus 로고    scopus 로고
    • Isotropic hashing
    • Kong, W and Li, W.-J. 2012. Isotropic hashing. In NIPS 25.
    • (2012) NIPS , pp. 25
    • Kong, W.1    Li, W.-J.2
  • 11
    • 84856670335 scopus 로고    scopus 로고
    • Coherency sensitive hashing
    • Korman, S., and Avidan, S. 2011. Coherency sensitive hashing. In Proc. ICCV.
    • (2011) Proc. ICCV
    • Korman, S.1    Avidan, S.2
  • 13
    • 79959696213 scopus 로고    scopus 로고
    • Learning to hash with binary reconstructive embeddings
    • Kulis, B., and Darrell, T. 2009. Learning to hash with binary reconstructive embeddings. In NIPS 22.
    • (2009) NIPS , pp. 22
    • Kulis, B.1    Darrell, T.2
  • 19
    • 0001035413 scopus 로고
    • On the method of bounded differences
    • McDiarmid, C. 1989. On the method of bounded differences. Surveys in combinatorics 141(1): 148-188.
    • (1989) Surveys in Combinatorics , vol.141 , Issue.1 , pp. 148-188
    • McDiarmid, C.1
  • 20
    • 77955986970 scopus 로고    scopus 로고
    • Weakly-supervised hashing in kernel space
    • Mu, Y.; Shen, J.; and Yan, S. 2010. Weakly-supervised hashing in kernel space. In Proc. CVPR.
    • (2010) Proc. CVPR
    • Mu, Y.1    Shen, J.2    Yan, S.3
  • 21
    • 80053457714 scopus 로고    scopus 로고
    • Minimal loss hashing for compact binary codes
    • Norouzi, M., and Blei, D. M. 2011. Minimal loss hashing for compact binary codes. In Proc. ICML.
    • (2011) Proc. ICML
    • Norouzi, M.1    Blei, D.M.2
  • 22
    • 0035328421 scopus 로고    scopus 로고
    • Modeling the shape of the scene: A holistic representation of the spatial envelope
    • Oliva, A., and Torralba, A. 2001. Modeling the shape of the scene: A holistic representation of the spatial envelope. International journal of computer vision 42(3): 145-175.
    • (2001) International Journal of Computer Vision , vol.42 , Issue.3 , pp. 145-175
    • Oliva, A.1    Torralba, A.2
  • 23
    • 84860628701 scopus 로고    scopus 로고
    • Locality-sensitive binary codes from shift-invariant kernels
    • Raginsky, M., and Lazebnik, S. 2009. Locality-sensitive binary codes from shift-invariant kernels. In NIPS 22.
    • (2009) NIPS , pp. 22
    • Raginsky, M.1    Lazebnik, S.2
  • 25
    • 54749092170 scopus 로고    scopus 로고
    • 80 Milliontiny images: A large data set for nonparametric object and scene recognition
    • Torralba, A.; Fergus, R.; and Freeman, W. T. 2008. 80 milliontiny images: A large data set for nonparametric object and scene recognition. IEEE Trans. Pattern Analysis and Machine Intelligence 30(11): 1958-1970.
    • (2008) IEEE Trans. Pattern Analysis and Machine Intelligence , vol.30 , Issue.11 , pp. 1958-1970
    • Torralba, A.1    Fergus, R.2    Freeman, W.T.3
  • 26
    • 51949119257 scopus 로고    scopus 로고
    • Small codes and large image databases for recognition
    • Torralba, A.; Fergus, R.; and Weiss, Y. 2008. Small codes and large image databases for recognition. In Proc. CVPR.
    • (2008) Proc. CVPR
    • Torralba, A.1    Fergus, R.2    Weiss, Y.3
  • 30
    • 0344551898 scopus 로고    scopus 로고
    • Multiclass spectral clustering
    • Yu, S. X., and Shi, J. 2003. Multiclass spectral clustering. In Proc. ICCV.
    • (2003) Proc. ICCV
    • Yu, S.X.1    Shi, J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.