메뉴 건너뛰기




Volumn 107, Issue 7, 2014, Pages 1756-1772

Equations of Interdoublet Separation during Flagella Motion Reveal Mechanisms of Wave Propagation and Instability

Author keywords

[No Author keywords available]

Indexed keywords

DYNEIN ADENOSINE TRIPHOSPHATASE;

EID: 84908192202     PISSN: 00063495     EISSN: 15420086     Source Type: Journal    
DOI: 10.1016/j.bpj.2014.07.064     Document Type: Article
Times cited : (57)

References (61)
  • 1
    • 33747598723 scopus 로고    scopus 로고
    • The molecular architecture of axonemes revealed by cryoelectron tomography
    • D. Nicastro, and C. Schwartz J.R. McIntosh The molecular architecture of axonemes revealed by cryoelectron tomography Science 313 2006 944 948
    • (2006) Science , vol.313 , pp. 944-948
    • Nicastro, D.1    Schwartz, C.2    McIntosh, J.R.3
  • 2
    • 0014342870 scopus 로고
    • Studies on cilia. 3. Further studies on the cilium tip and a "sliding filament" model of ciliary motility
    • P. Satir Studies on cilia. 3. Further studies on the cilium tip and a "sliding filament" model of ciliary motility J. Cell Biol. 39 1968 77 94
    • (1968) J. Cell Biol. , vol.39 , pp. 77-94
    • Satir, P.1
  • 3
    • 75149181374 scopus 로고    scopus 로고
    • Cell biology: How cilia beat
    • T.J. Mitchison, and H.M. Mitchison Cell biology: how cilia beat Nature 463 2010 308 309
    • (2010) Nature , vol.463 , pp. 308-309
    • Mitchison, T.J.1    Mitchison, H.M.2
  • 4
    • 34249947264 scopus 로고    scopus 로고
    • Induction of beating by imposed bending or mechanical pulse in demembranated, motionless sea urchin sperm flagella at very low ATP concentrations
    • R. Ishikawa, and C. Shingyoji Induction of beating by imposed bending or mechanical pulse in demembranated, motionless sea urchin sperm flagella at very low ATP concentrations Cell Struct. Funct. 32 2007 17 27
    • (2007) Cell Struct. Funct. , vol.32 , pp. 17-27
    • Ishikawa, R.1    Shingyoji, C.2
  • 5
    • 0030762480 scopus 로고    scopus 로고
    • Induction of temporary beating in paralyzed flagella of Chlamydomonas mutants by application of external force
    • K. Hayashibe, C. Shingyoji, and R. Kamiya Induction of temporary beating in paralyzed flagella of Chlamydomonas mutants by application of external force Cell Motil. Cytoskeleton 37 1997 232 239
    • (1997) Cell Motil. Cytoskeleton , vol.37 , pp. 232-239
    • Hayashibe, K.1    Shingyoji, C.2    Kamiya, R.3
  • 6
    • 34547134932 scopus 로고    scopus 로고
    • Evidence for axonemal distortion during the flagellar beat of Chlamydomonas
    • C.B. Lindemann, and D.R. Mitchell Evidence for axonemal distortion during the flagellar beat of Chlamydomonas Cell Motil. Cytoskeleton 64 2007 580 589
    • (2007) Cell Motil. Cytoskeleton , vol.64 , pp. 580-589
    • Lindemann, C.B.1    Mitchell, D.R.2
  • 7
    • 0019418590 scopus 로고
    • Functionally significant central-pair rotation in a primitive eukaryotic flagellum
    • C.K. Omoto, and G.B. Witman Functionally significant central-pair rotation in a primitive eukaryotic flagellum Nature 290 1981 708 710
    • (1981) Nature , vol.290 , pp. 708-710
    • Omoto, C.K.1    Witman, G.B.2
  • 8
    • 0032920554 scopus 로고    scopus 로고
    • Rotation of the central pair microtubules in eukaryotic flagella
    • C.K. Omoto, and I.R. Gibbons G.B. Witman Rotation of the central pair microtubules in eukaryotic flagella Mol. Biol. Cell 10 1999 1 4
    • (1999) Mol. Biol. Cell , vol.10 , pp. 1-4
    • Omoto, C.K.1    Gibbons, I.R.2    Witman, G.B.3
  • 9
    • 0141841624 scopus 로고    scopus 로고
    • Orientation of the central pair complex during flagellar bend formation in Chlamydomonas
    • D.R. Mitchell Orientation of the central pair complex during flagellar bend formation in Chlamydomonas Cell Motil. Cytoskeleton 56 2003 120 129
    • (2003) Cell Motil. Cytoskeleton , vol.56 , pp. 120-129
    • Mitchell, D.R.1
  • 10
    • 0016656320 scopus 로고
    • Computer simulation of flagellar movement.III.Models incorporating cross-bridge kinetics
    • C.J. Brokaw, and D.R. Rintala Computer simulation of flagellar movement. III. Models incorporating cross-bridge kinetics J. Mechanochem. Cell Motil. 3 1975 77 86
    • (1975) J. Mechanochem. Cell Motil. , vol.3 , pp. 77-86
    • Brokaw, C.J.1    Rintala, D.R.2
  • 11
    • 0025054031 scopus 로고
    • Simulation of ciliary beating by an excitable dynein model: Oscillations, quiescence and mechano-sensitivity
    • M. Murase Simulation of ciliary beating by an excitable dynein model: oscillations, quiescence and mechano-sensitivity J. Theor. Biol. 146 1990 209 231
    • (1990) J. Theor. Biol. , vol.146 , pp. 209-231
    • Murase, M.1
  • 12
    • 0037488287 scopus 로고    scopus 로고
    • Generic aspects of axonemal beating
    • S. Camalet, and F. Jülicher Generic aspects of axonemal beating New J. Phys. 2 2000 241 243
    • (2000) New J. Phys. , vol.2 , pp. 241-243
    • Camalet, S.1    Jülicher, F.2
  • 13
    • 39149113208 scopus 로고    scopus 로고
    • How molecular motors shape the flagellar beat
    • I.H. Riedel-Kruse, and A. Hilfinger F. Jülicher How molecular motors shape the flagellar beat HFSP J 1 2007 192 208
    • (2007) HFSP J , vol.1 , pp. 192-208
    • Riedel-Kruse, I.H.1    Hilfinger, A.2    Jülicher, F.3
  • 15
    • 67650039532 scopus 로고    scopus 로고
    • Thinking about flagellar oscillation
    • C.J. Brokaw Thinking about flagellar oscillation Cell Motil. Cytoskeleton 66 2009 425 436
    • (2009) Cell Motil. Cytoskeleton , vol.66 , pp. 425-436
    • Brokaw, C.J.1
  • 16
    • 76649124249 scopus 로고    scopus 로고
    • Flagellar and ciliary beating: The proven and the possible
    • C.B. Lindemann, and K.A. Lesich Flagellar and ciliary beating: the proven and the possible J. Cell Sci. 123 2010 519 528
    • (2010) J. Cell Sci. , vol.123 , pp. 519-528
    • Lindemann, C.B.1    Lesich, K.A.2
  • 17
    • 77954570901 scopus 로고    scopus 로고
    • Flagellar oscillation: A commentary on proposed mechanisms
    • D.M. Woolley Flagellar oscillation: a commentary on proposed mechanisms Biol. Rev. Camb. Philos. Soc. 85 2010 453 470
    • (2010) Biol. Rev. Camb. Philos. Soc. , vol.85 , pp. 453-470
    • Woolley, D.M.1
  • 18
    • 0015132091 scopus 로고
    • Bend propagation by a sliding filament model for flagella
    • C.J. Brokaw Bend propagation by a sliding filament model for flagella J. Exp. Biol. 55 1971 289 304
    • (1971) J. Exp. Biol. , vol.55 , pp. 289-304
    • Brokaw, C.J.1
  • 19
    • 0017621380 scopus 로고
    • Computer simulation of flagellar movement. V. Oscillation of cross-bridge models with an ATP-concentration-dependent rate function
    • C.J. Brokaw, and D. Rintala Computer simulation of flagellar movement. V. Oscillation of cross-bridge models with an ATP-concentration-dependent rate function J. Mechanochem. Cell Motil. 4 1977 205 232
    • (1977) J. Mechanochem. Cell Motil. , vol.4 , pp. 205-232
    • Brokaw, C.J.1    Rintala, D.2
  • 20
    • 0033031981 scopus 로고    scopus 로고
    • Computer simulation of flagellar movement. VII. Conventional but functionally different cross-bridge models for inner and outer arm dyneins can explain the effects of outer arm dynein removal
    • C.J. Brokaw Computer simulation of flagellar movement. VII. Conventional but functionally different cross-bridge models for inner and outer arm dyneins can explain the effects of outer arm dynein removal Cell Motil. Cytoskeleton 42 1999 134 148
    • (1999) Cell Motil. Cytoskeleton , vol.42 , pp. 134-148
    • Brokaw, C.J.1
  • 21
    • 0022349079 scopus 로고
    • Computer simulation of flagellar movement. VI. Simple curvature-controlled models are incompletely specified
    • C.J. Brokaw Computer simulation of flagellar movement. VI. Simple curvature-controlled models are incompletely specified Biophys. J. 48 1985 633 642
    • (1985) Biophys. J. , vol.48 , pp. 633-642
    • Brokaw, C.J.1
  • 22
    • 0036785117 scopus 로고    scopus 로고
    • Computer simulation of flagellar movement. VIII. Coordination of dynein by local curvature control can generate helical bending waves
    • C.J. Brokaw Computer simulation of flagellar movement. VIII. Coordination of dynein by local curvature control can generate helical bending waves Cell Motil. Cytoskeleton 53 2002 103 124
    • (2002) Cell Motil. Cytoskeleton , vol.53 , pp. 103-124
    • Brokaw, C.J.1
  • 23
    • 11244337459 scopus 로고    scopus 로고
    • Computer simulation of flagellar movement. IX. Oscillation and symmetry breaking in a model for short flagella and nodal cilia
    • C.J. Brokaw Computer simulation of flagellar movement. IX. Oscillation and symmetry breaking in a model for short flagella and nodal cilia Cell Motil. Cytoskeleton 60 2005 35 47
    • (2005) Cell Motil. Cytoskeleton , vol.60 , pp. 35-47
    • Brokaw, C.J.1
  • 24
    • 0018151006 scopus 로고
    • Bend propagation in flagella. I. Derivation of equations of motion and their simulation
    • M. Hines, and J.J. Blum Bend propagation in flagella. I. Derivation of equations of motion and their simulation Biophys. J. 23 1978 41 57
    • (1978) Biophys. J. , vol.23 , pp. 41-57
    • Hines, M.1    Blum, J.J.2
  • 25
    • 37249054547 scopus 로고    scopus 로고
    • Theory of swimming filaments in viscoelastic media
    • H.C. Fu, T.R. Powers, and C.W. Wolgemuth Theory of swimming filaments in viscoelastic media Phys. Rev. Lett. 99 2007 258101
    • (2007) Phys. Rev. Lett. , vol.99 , pp. 258101
    • Fu, H.C.1    Powers, T.R.2    Wolgemuth, C.W.3
  • 27
    • 64249161673 scopus 로고    scopus 로고
    • Swimming speeds of filaments in nonlinearly viscoelastic fluids
    • H.C. Fu, C.W. Wolgemuth, and T.R. Powers Swimming speeds of filaments in nonlinearly viscoelastic fluids Phys Fluids (1994) 21 2009 33102
    • (2009) Phys Fluids (1994) , vol.21 , pp. 33102
    • Fu, H.C.1    Wolgemuth, C.W.2    Powers, T.R.3
  • 28
    • 44749093588 scopus 로고    scopus 로고
    • Are the local adjustments of the relative spatial frequencies of the dynein arms and the β-tubulin monomers involved in the regulation of the "9+2" axoneme?
    • C. Cibert Are the local adjustments of the relative spatial frequencies of the dynein arms and the β-tubulin monomers involved in the regulation of the "9+2" axoneme? J. Theor. Biol. 253 2008 74 89
    • (2008) J. Theor. Biol. , vol.253 , pp. 74-89
    • Cibert, C.1
  • 29
    • 0023054432 scopus 로고
    • A model of flagellar movement based on cooperative dynamics of dynein-tubulin cross-bridges
    • M. Murase, and H. Shimizu A model of flagellar movement based on cooperative dynamics of dynein-tubulin cross-bridges J. Theor. Biol. 119 1986 409 433
    • (1986) J. Theor. Biol. , vol.119 , pp. 409-433
    • Murase, M.1    Shimizu, H.2
  • 30
    • 0024965560 scopus 로고
    • Properties of an excitable dynein model for bend propagation in cilia and flagella
    • M. Murase, M. Hines, and J.J. Blum Properties of an excitable dynein model for bend propagation in cilia and flagella J. Theor. Biol. 139 1989 413 430
    • (1989) J. Theor. Biol. , vol.139 , pp. 413-430
    • Murase, M.1    Hines, M.2    Blum, J.J.3
  • 31
    • 0025752773 scopus 로고
    • Excitable dynein model with multiple active sites for large-amplitude oscillations and bend propagation in flagella
    • M. Murase Excitable dynein model with multiple active sites for large-amplitude oscillations and bend propagation in flagella J. Theor. Biol. 149 1991 181 202
    • (1991) J. Theor. Biol. , vol.149 , pp. 181-202
    • Murase, M.1
  • 32
    • 0028022885 scopus 로고
    • A model of flagellar and ciliary functioning which uses the forces transverse to the axoneme as the regulator of dynein activation
    • C.B. Lindemann A model of flagellar and ciliary functioning which uses the forces transverse to the axoneme as the regulator of dynein activation Cell Motil. Cytoskeleton 29 1994 141 154
    • (1994) Cell Motil. Cytoskeleton , vol.29 , pp. 141-154
    • Lindemann, C.B.1
  • 33
    • 0035997132 scopus 로고    scopus 로고
    • Geometric clutch model version 3: The role of the inner and outer arm dyneins in the ciliary beat
    • C.B. Lindemann Geometric clutch model version 3: the role of the inner and outer arm dyneins in the ciliary beat Cell Motil. Cytoskeleton 52 2002 242 254
    • (2002) Cell Motil. Cytoskeleton , vol.52 , pp. 242-254
    • Lindemann, C.B.1
  • 34
    • 34250625694 scopus 로고    scopus 로고
    • The geometric clutch as a working hypothesis for future research on cilia and flagella
    • C.B. Lindemann The geometric clutch as a working hypothesis for future research on cilia and flagella Ann. N. Y. Acad. Sci. 1101 2007 477 493
    • (2007) Ann. N. Y. Acad. Sci. , vol.1101 , pp. 477-493
    • Lindemann, C.B.1
  • 35
    • 84898904390 scopus 로고    scopus 로고
    • Computer simulation of flagellar movement X: Doublet pair splitting and bend propagation modeled using stochastic dynein kinetics
    • C.J. Brokaw Computer simulation of flagellar movement X: doublet pair splitting and bend propagation modeled using stochastic dynein kinetics Cytoskeleton (Hoboken) 71 2014 273 284
    • (2014) Cytoskeleton (Hoboken) , vol.71 , pp. 273-284
    • Brokaw, C.J.1
  • 36
    • 0028174303 scopus 로고
    • A geometric clutch hypothesis to explain oscillations of the axoneme of cilia and flagella
    • C.B. Lindemann A geometric clutch hypothesis to explain oscillations of the axoneme of cilia and flagella J. Theor. Biol. 168 1994 175 189
    • (1994) J. Theor. Biol. , vol.168 , pp. 175-189
    • Lindemann, C.B.1
  • 37
    • 0025949481 scopus 로고
    • Microtubule sliding in swimming sperm flagella: Direct and indirect measurements on sea urchin and tunicate spermatozoa
    • C.J. Brokaw Microtubule sliding in swimming sperm flagella: direct and indirect measurements on sea urchin and tunicate spermatozoa J. Cell Biol. 114 1991 1201 1215
    • (1991) J. Cell Biol. , vol.114 , pp. 1201-1215
    • Brokaw, C.J.1
  • 38
    • 0029125215 scopus 로고
    • The propagation of a zone of activation along groups of flagellar doublet microtubules
    • G.G. Vernon, and D.M. Woolley The propagation of a zone of activation along groups of flagellar doublet microtubules Exp. Cell Res. 220 1995 482 494
    • (1995) Exp. Cell Res. , vol.220 , pp. 482-494
    • Vernon, G.G.1    Woolley, D.M.2
  • 39
    • 0030578639 scopus 로고    scopus 로고
    • Chaotic spatial patterns described by the extended Fisher-Kolmogorov equation
    • L.A. Peletier, and W.C. Troy Chaotic spatial patterns described by the extended Fisher-Kolmogorov equation J. Differ. Equ. 129 1996 458 508
    • (1996) J. Differ. Equ. , vol.129 , pp. 458-508
    • Peletier, L.A.1    Troy, W.C.2
  • 40
    • 0001208318 scopus 로고    scopus 로고
    • Travelling wave solutions of a fourth-order semilinear diffusion equation
    • M.E. Akveld, and J. Hulshof Travelling wave solutions of a fourth-order semilinear diffusion equation Appl. Math. Lett. 11 1998 115 120
    • (1998) Appl. Math. Lett. , vol.11 , pp. 115-120
    • Akveld, M.E.1    Hulshof, J.2
  • 42
    • 21844498292 scopus 로고
    • Stationary solutions of a 4th-order nonlinear diffusion equation
    • L.A. Peletier, W.C. Troy, and R.C.A.M. Vandervorst Stationary solutions of a 4th-order nonlinear diffusion equation Differ. Equ. 31 1995 301 314
    • (1995) Differ. Equ. , vol.31 , pp. 301-314
    • Peletier, L.A.1    Troy, W.C.2    Vandervorst, R.C.A.M.3
  • 43
    • 0001173202 scopus 로고    scopus 로고
    • Spatial patterns described by the extended Fisher-Kolmogorov equation: Periodic solutions
    • L.A. Peletier, and W.C. Troy Spatial patterns described by the extended Fisher-Kolmogorov equation: periodic solutions SIAM J. Math. Anal. 28 1997 1317 1353
    • (1997) SIAM J. Math. Anal. , vol.28 , pp. 1317-1353
    • Peletier, L.A.1    Troy, W.C.2
  • 44
    • 0001378357 scopus 로고    scopus 로고
    • Pulse-like spatial patterns described by higher-order model equations
    • L.A. Peletier, A.I. Rotariu-Bruma, and W.C. Troy Pulse-like spatial patterns described by higher-order model equations J. Differ. Equ. 150 1998 124 187
    • (1998) J. Differ. Equ. , vol.150 , pp. 124-187
    • Peletier, L.A.1    Rotariu-Bruma, A.I.2    Troy, W.C.3
  • 46
    • 0015338135 scopus 로고
    • Computer simulation of flagellar movement. I. Demonstration of stable bend propagation and bend initiation by the sliding filament model
    • C.J. Brokaw Computer simulation of flagellar movement. I. Demonstration of stable bend propagation and bend initiation by the sliding filament model Biophys. J. 12 1972 564 586
    • (1972) Biophys. J. , vol.12 , pp. 564-586
    • Brokaw, C.J.1
  • 48
    • 2642554769 scopus 로고    scopus 로고
    • Multitransition kinks and pulses for fourth order equations with a bistable nonlinearity
    • D. Bonheure Multitransition kinks and pulses for fourth order equations with a bistable nonlinearity Ann. Inst. Henri Poincare, Anal. Non Lineaire 21 2004 319 340
    • (2004) Ann. Inst. Henri Poincare, Anal. Non Lineaire , vol.21 , pp. 319-340
    • Bonheure, D.1
  • 49
    • 0020690524 scopus 로고
    • Bending patterns of Chlamydomonas flagella.I.Wild-type bending patterns
    • C.J. Brokaw, and D.J. Luck Bending patterns of Chlamydomonas flagella. I. Wild-type bending patterns Cell Motil. 3 1983 131 150
    • (1983) Cell Motil. , vol.3 , pp. 131-150
    • Brokaw, C.J.1    Luck, D.J.2
  • 50
    • 77649158939 scopus 로고    scopus 로고
    • Efficient spatiotemporal analysis of the flagellar waveform of Chlamydomonas reinhardtii
    • P.V. Bayly, and B.L. Lewis S.K. Dutcher Efficient spatiotemporal analysis of the flagellar waveform of Chlamydomonas reinhardtii Cytoskeleton (Hoboken) 67 2010 56 69
    • (2010) Cytoskeleton (Hoboken) , vol.67 , pp. 56-69
    • Bayly, P.V.1    Lewis, B.L.2    Dutcher, S.K.3
  • 51
    • 79960308120 scopus 로고    scopus 로고
    • Propulsive forces on the flagellum during locomotion of Chlamydomonas reinhardtii
    • P.V. Bayly, and B.L. Lewis S.K. Dutcher Propulsive forces on the flagellum during locomotion of Chlamydomonas reinhardtii Biophys. J. 100 2011 2716 2725
    • (2011) Biophys. J. , vol.100 , pp. 2716-2725
    • Bayly, P.V.1    Lewis, B.L.2    Dutcher, S.K.3
  • 52
    • 0026768745 scopus 로고
    • Regulation of dynein-driven microtubule sliding by the radial spokes in flagella
    • E.F. Smith, and W.S. Sale Regulation of dynein-driven microtubule sliding by the radial spokes in flagella Science 257 1992 1557 1559
    • (1992) Science , vol.257 , pp. 1557-1559
    • Smith, E.F.1    Sale, W.S.2
  • 53
    • 0036245322 scopus 로고    scopus 로고
    • Regulation of flagellar dynein by the axonemal central apparatus
    • E.F. Smith Regulation of flagellar dynein by the axonemal central apparatus Cell Motil. Cytoskeleton 52 2002 33 42
    • (2002) Cell Motil. Cytoskeleton , vol.52 , pp. 33-42
    • Smith, E.F.1
  • 54
    • 0037422637 scopus 로고    scopus 로고
    • Asymmetry of the central apparatus defines the location of active microtubule sliding in Chlamydomonas flagella
    • M.J. Wargo, and E.F. Smith Asymmetry of the central apparatus defines the location of active microtubule sliding in Chlamydomonas flagella Proc. Natl. Acad. Sci. USA 100 2003 137 142
    • (2003) Proc. Natl. Acad. Sci. USA , vol.100 , pp. 137-142
    • Wargo, M.J.1    Smith, E.F.2
  • 55
    • 0346732099 scopus 로고    scopus 로고
    • The radial spokes and central apparatus: Mechano-chemical transducers that regulate flagellar motility
    • E.F. Smith, and P. Yang The radial spokes and central apparatus: mechano-chemical transducers that regulate flagellar motility Cell Motil. Cytoskeleton 57 2004 8 17
    • (2004) Cell Motil. Cytoskeleton , vol.57 , pp. 8-17
    • Smith, E.F.1    Yang, P.2
  • 56
    • 3042730953 scopus 로고    scopus 로고
    • Analysis of microtubule sliding patterns in Chlamydomonas flagellar axonemes reveals dynein activity on specific doublet microtubules
    • M.J. Wargo, M.A. McPeek, and E.F. Smith Analysis of microtubule sliding patterns in Chlamydomonas flagellar axonemes reveals dynein activity on specific doublet microtubules J. Cell Sci. 117 2004 2533 2544
    • (2004) J. Cell Sci. , vol.117 , pp. 2533-2544
    • Wargo, M.J.1    McPeek, M.A.2    Smith, E.F.3
  • 57
    • 77957899549 scopus 로고    scopus 로고
    • Oscillatory flows induced by microorganisms swimming in two dimensions
    • J.S. Guasto, K.A. Johnson, and J.P. Gollub Oscillatory flows induced by microorganisms swimming in two dimensions Phys. Rev. Lett. 105 2010 168102
    • (2010) Phys. Rev. Lett. , vol.105 , pp. 168102
    • Guasto, J.S.1    Johnson, K.A.2    Gollub, J.P.3
  • 58
    • 77957900213 scopus 로고    scopus 로고
    • Direct measurement of the flow field around swimming microorganisms
    • K. Drescher, and R.E. Goldstein I. Tuval Direct measurement of the flow field around swimming microorganisms Phys. Rev. Lett. 105 2010 168101
    • (2010) Phys. Rev. Lett. , vol.105 , pp. 168101
    • Drescher, K.1    Goldstein, R.E.2    Tuval, I.3
  • 59
    • 0027533269 scopus 로고
    • Flexural rigidity of microtubules and actin filaments measured from thermal fluctuations in shape
    • F. Gittes, and B. Mickey J. Howard Flexural rigidity of microtubules and actin filaments measured from thermal fluctuations in shape J. Cell Biol. 120 1993 923 934
    • (1993) J. Cell Biol. , vol.120 , pp. 923-934
    • Gittes, F.1    Mickey, B.2    Howard, J.3
  • 60
    • 0018942981 scopus 로고
    • Inhibition and relaxation of sea urchin sperm flagella by vanadate
    • M. Okuno Inhibition and relaxation of sea urchin sperm flagella by vanadate J. Cell Biol. 85 1980 712 725
    • (1980) J. Cell Biol. , vol.85 , pp. 712-725
    • Okuno, M.1
  • 61
    • 68549128548 scopus 로고    scopus 로고
    • Mechanical properties of the passive sea urchin sperm flagellum
    • D.W. Pelle, and C.J. Brokaw C.B. Lindemann Mechanical properties of the passive sea urchin sperm flagellum Cell Motil. Cytoskeleton 66 2009 721 735
    • (2009) Cell Motil. Cytoskeleton , vol.66 , pp. 721-735
    • Pelle, D.W.1    Brokaw, C.J.2    Lindemann, C.B.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.