-
1
-
-
34548832230
-
A fast diffeomorphic image registration algorithm
-
Ashburner, J. 2007. A fast diffeomorphic image registration algorithm. Neuroimage 38(1):95-113.
-
(2007)
Neuroimage
, vol.38
, Issue.1
, pp. 95-113
-
-
Ashburner, J.1
-
2
-
-
84879900677
-
Efficient network-guided multilocus association mapping with graph cuts
-
Azencott, C.; Grimm, D.; Sugiyama, M.; Kawahara, Y.; and Borgwardt, K. 2013. Efficient network-guided multilocus association mapping with graph cuts. Bioinformatics 29(13): il71-il79.
-
(2013)
Bioinformatics
, vol.29
, Issue.13
, pp. il71-il79
-
-
Azencott, C.1
Grimm, D.2
Sugiyama, M.3
Kawahara, Y.4
Borgwardt, K.5
-
3
-
-
84857710417
-
Optimization with sparsity-inducing penalties
-
Bach, F.; Jenatton, R.; Mairal, J.; and Obozinski, G. 2012. Optimization with sparsity-inducing penalties. Foundations and Trends in Machine Learning 4(1):1-106.
-
(2012)
Foundations and Trends in Machine Learning
, vol.4
, Issue.1
, pp. 1-106
-
-
Bach, F.1
Jenatton, R.2
Mairal, J.3
Obozinski, G.4
-
4
-
-
85162027958
-
Structured sparsity-inducing norms through submodular functions
-
Bach, F. 2010. Structured sparsity-inducing norms through submodular functions. In Advances in Neural Information Processing Systems, volume 23. 118-126.
-
(2010)
Advances in Neural Information Processing Systems
, vol.23
, pp. 118-126
-
-
Bach, F.1
-
5
-
-
85014561619
-
A fast iterative shrinkagethresholding algorithm for linear inverse problems
-
Beck, A., and Teboulle, M. 2009. A fast iterative shrinkagethresholding algorithm for linear inverse problems. SIAM Journal on Imaging Sciences 2(1):183-202.
-
(2009)
SIAM Journal on Imaging Sciences
, vol.2
, Issue.1
, pp. 183-202
-
-
Beck, A.1
Teboulle, M.2
-
7
-
-
84862776712
-
Does feature selection improve classification accuracy? Impact of sample size and feature selection on classification using anatomical magnetic resonance images
-
Chu, C.; Hsu, A.-L.; Chou, K.-H.; Bandettini, P.; and Lin, C. 2012. Does feature selection improve classification accuracy? impact of sample size and feature selection on classification using anatomical magnetic resonance images. Neuroimage 60(1):59-70.
-
(2012)
Neuroimage
, vol.60
, Issue.1
, pp. 59-70
-
-
Chu, C.1
Hsu, A.-L.2
Chou, K.-H.3
Bandettini, P.4
Lin, C.5
-
8
-
-
84855434935
-
Discriminative analysis of early alzheimer's disease using multi-modal imaging and multi-level characterization with multi-classifier (m3)
-
Dai, Z.; Yan, C.; Wang, Z.; Wang, J.; Xia, M.; Li, K.; and He, Y. 2012. Discriminative analysis of early alzheimer's disease using multi-modal imaging and multi-level characterization with multi-classifier (m3). Neuroimage 59(3):2187-2195.
-
(2012)
Neuroimage
, vol.59
, Issue.3
, pp. 2187-2195
-
-
Dai, Z.1
Yan, C.2
Wang, Z.3
Wang, J.4
Xia, M.5
Li, K.6
He, Y.7
-
10
-
-
45849107328
-
Pathwise coordinate optimization
-
Friedman, J.; Hastie, T.; Hofling, H.; and Tibshirani, R. 2007. Pathwise coordinate optimization. The Annals of Applied Statistics 1(2):302-332.
-
(2007)
The Annals of Applied Statistics
, vol.1
, Issue.2
, pp. 302-332
-
-
Friedman, J.1
Hastie, T.2
Hofling, H.3
Tibshirani, R.4
-
13
-
-
0024610615
-
A fast parametric maximum flow algorithm and applications
-
Gallo, G.; Grigoriadis, M.; and Tarja, R. 1989. A fast parametric maximum flow algorithm and applications. SIAM Journal of Computing 18(1):30-55.
-
(1989)
SIAM Journal of Computing
, vol.18
, Issue.1
, pp. 30-55
-
-
Gallo, G.1
Grigoriadis, M.2
Tarja, R.3
-
14
-
-
0003468941
-
-
Technical report, University of California, San Diego
-
Gill, P.; Murray, W.; and Saunders, M. 1999. User's guide for SNOPT 5.3: A fortran package for large-scale nonlinear programming. Technical report, University of California, San Diego.
-
(1999)
User's Guide for SNOPT 5.3: A Fortran Package for Large-scale Nonlinear Programming
-
-
Gill, P.1
Murray, W.2
Saunders, M.3
-
15
-
-
77957079247
-
Parametric maximum flow algorithms for fast total variation minimization
-
Goldfarb, D., and Yin, W. 2009. Parametric maximum flow algorithms for fast total variation minimization. SIAM Journal on Scientific Computing 31(5):3712-3743.
-
(2009)
SIAM Journal on Scientific Computing
, vol.31
, Issue.5
, pp. 3712-3743
-
-
Goldfarb, D.1
Yin, W.2
-
21
-
-
80555129671
-
Convex and network flow optimization for structured sparsity
-
Mairal, J.; Jenatton, R.; Obozinski, G.; and Bach, F. 2011. Convex and network flow optimization for structured sparsity. Journal of Machine Learning Research 12:2681-2720.
-
(2011)
Journal of Machine Learning Research
, vol.12
, pp. 2681-2720
-
-
Mairal, J.1
Jenatton, R.2
Obozinski, G.3
Bach, F.4
-
26
-
-
58149485960
-
A faster strongly polynomial time algorithm for submodular function minimization
-
Orlin, J. 2009. A faster strongly polynomial time algorithm for submodular function minimization. Mathematical Programming 118:237-251.
-
(2009)
Mathematical Programming
, vol.118
, pp. 237-251
-
-
Orlin, J.1
-
27
-
-
85049776636
-
-
Optimization Software, Publications Division New York
-
Polëiìak, B. 1987. Introduction to Optimization. Optimization Software, Publications Division (New York).
-
(1987)
Introduction to Optimization
-
-
Polëiìak, B.1
-
28
-
-
79954994522
-
The solution path of the generalized lasso
-
Tibshirani, R., and Taylor, J. 2011. The solution path of the generalized lasso. Annals of Statistics 39(3):1335-1371.
-
(2011)
Annals of Statistics
, vol.39
, Issue.3
, pp. 1335-1371
-
-
Tibshirani, R.1
Taylor, J.2
-
29
-
-
12844266177
-
Sparsity and smoothness via the fused Lasso
-
Tibshirani, R.; Saunders, M.; Rosset, S.; Zhu, J.; and Knight, K. 2005. Sparsity and smoothness via the fused Lasso. Journal of the Royal Statistical Society: Series B 67(1):91-108.
-
(2005)
Journal of the Royal Statistical Society: Series B
, vol.67
, Issue.1
, pp. 91-108
-
-
Tibshirani, R.1
Saunders, M.2
Rosset, S.3
Zhu, J.4
Knight, K.5
-
30
-
-
85194972808
-
Regression shrinkage and selection via the Lasso
-
Tibshirani, R. 1996. Regression shrinkage and selection via the Lasso. Journal of Royal Statistical Society B 58(1):267-288.
-
(1996)
Journal of Royal Statistical Society B
, vol.58
, Issue.1
, pp. 267-288
-
-
Tibshirani, R.1
-
31
-
-
80052666240
-
A multi-task learning formulation for predicting disease progression
-
ACM
-
Zhou, J.; Yuan, L.; Liu, J.; and Ye, J. 2011. A multi-task learning formulation for predicting disease progression. In Proceedings of the 17th ACM SIGKDD international conference on Knowledge discovery and data mining, 814-822. ACM.
-
(2011)
Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
, pp. 814-822
-
-
Zhou, J.1
Yuan, L.2
Liu, J.3
Ye, J.4
|