메뉴 건너뛰기




Volumn 3, Issue , 2014, Pages 2163-2169

Efficient generalized fused lasso and its application to the diagnosis of Alzheimer's disease

Author keywords

[No Author keywords available]

Indexed keywords

ALZHEIMER'S DISEASE; FUSED LASSOS; ITS APPLICATIONS;

EID: 84908154815     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (74)

References (31)
  • 1
    • 34548832230 scopus 로고    scopus 로고
    • A fast diffeomorphic image registration algorithm
    • Ashburner, J. 2007. A fast diffeomorphic image registration algorithm. Neuroimage 38(1):95-113.
    • (2007) Neuroimage , vol.38 , Issue.1 , pp. 95-113
    • Ashburner, J.1
  • 2
    • 84879900677 scopus 로고    scopus 로고
    • Efficient network-guided multilocus association mapping with graph cuts
    • Azencott, C.; Grimm, D.; Sugiyama, M.; Kawahara, Y.; and Borgwardt, K. 2013. Efficient network-guided multilocus association mapping with graph cuts. Bioinformatics 29(13): il71-il79.
    • (2013) Bioinformatics , vol.29 , Issue.13 , pp. il71-il79
    • Azencott, C.1    Grimm, D.2    Sugiyama, M.3    Kawahara, Y.4    Borgwardt, K.5
  • 4
    • 85162027958 scopus 로고    scopus 로고
    • Structured sparsity-inducing norms through submodular functions
    • Bach, F. 2010. Structured sparsity-inducing norms through submodular functions. In Advances in Neural Information Processing Systems, volume 23. 118-126.
    • (2010) Advances in Neural Information Processing Systems , vol.23 , pp. 118-126
    • Bach, F.1
  • 5
    • 85014561619 scopus 로고    scopus 로고
    • A fast iterative shrinkagethresholding algorithm for linear inverse problems
    • Beck, A., and Teboulle, M. 2009. A fast iterative shrinkagethresholding algorithm for linear inverse problems. SIAM Journal on Imaging Sciences 2(1):183-202.
    • (2009) SIAM Journal on Imaging Sciences , vol.2 , Issue.1 , pp. 183-202
    • Beck, A.1    Teboulle, M.2
  • 7
    • 84862776712 scopus 로고    scopus 로고
    • Does feature selection improve classification accuracy? Impact of sample size and feature selection on classification using anatomical magnetic resonance images
    • Chu, C.; Hsu, A.-L.; Chou, K.-H.; Bandettini, P.; and Lin, C. 2012. Does feature selection improve classification accuracy? impact of sample size and feature selection on classification using anatomical magnetic resonance images. Neuroimage 60(1):59-70.
    • (2012) Neuroimage , vol.60 , Issue.1 , pp. 59-70
    • Chu, C.1    Hsu, A.-L.2    Chou, K.-H.3    Bandettini, P.4    Lin, C.5
  • 8
    • 84855434935 scopus 로고    scopus 로고
    • Discriminative analysis of early alzheimer's disease using multi-modal imaging and multi-level characterization with multi-classifier (m3)
    • Dai, Z.; Yan, C.; Wang, Z.; Wang, J.; Xia, M.; Li, K.; and He, Y. 2012. Discriminative analysis of early alzheimer's disease using multi-modal imaging and multi-level characterization with multi-classifier (m3). Neuroimage 59(3):2187-2195.
    • (2012) Neuroimage , vol.59 , Issue.3 , pp. 2187-2195
    • Dai, Z.1    Yan, C.2    Wang, Z.3    Wang, J.4    Xia, M.5    Li, K.6    He, Y.7
  • 13
    • 0024610615 scopus 로고
    • A fast parametric maximum flow algorithm and applications
    • Gallo, G.; Grigoriadis, M.; and Tarja, R. 1989. A fast parametric maximum flow algorithm and applications. SIAM Journal of Computing 18(1):30-55.
    • (1989) SIAM Journal of Computing , vol.18 , Issue.1 , pp. 30-55
    • Gallo, G.1    Grigoriadis, M.2    Tarja, R.3
  • 15
    • 77957079247 scopus 로고    scopus 로고
    • Parametric maximum flow algorithms for fast total variation minimization
    • Goldfarb, D., and Yin, W. 2009. Parametric maximum flow algorithms for fast total variation minimization. SIAM Journal on Scientific Computing 31(5):3712-3743.
    • (2009) SIAM Journal on Scientific Computing , vol.31 , Issue.5 , pp. 3712-3743
    • Goldfarb, D.1    Yin, W.2
  • 26
    • 58149485960 scopus 로고    scopus 로고
    • A faster strongly polynomial time algorithm for submodular function minimization
    • Orlin, J. 2009. A faster strongly polynomial time algorithm for submodular function minimization. Mathematical Programming 118:237-251.
    • (2009) Mathematical Programming , vol.118 , pp. 237-251
    • Orlin, J.1
  • 27
    • 85049776636 scopus 로고
    • Optimization Software, Publications Division New York
    • Polëiìak, B. 1987. Introduction to Optimization. Optimization Software, Publications Division (New York).
    • (1987) Introduction to Optimization
    • Polëiìak, B.1
  • 28
    • 79954994522 scopus 로고    scopus 로고
    • The solution path of the generalized lasso
    • Tibshirani, R., and Taylor, J. 2011. The solution path of the generalized lasso. Annals of Statistics 39(3):1335-1371.
    • (2011) Annals of Statistics , vol.39 , Issue.3 , pp. 1335-1371
    • Tibshirani, R.1    Taylor, J.2
  • 30
    • 85194972808 scopus 로고    scopus 로고
    • Regression shrinkage and selection via the Lasso
    • Tibshirani, R. 1996. Regression shrinkage and selection via the Lasso. Journal of Royal Statistical Society B 58(1):267-288.
    • (1996) Journal of Royal Statistical Society B , vol.58 , Issue.1 , pp. 267-288
    • Tibshirani, R.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.