메뉴 건너뛰기




Volumn , Issue , 2014, Pages 32-39

A comparison of forecasting approaches for capital markets

Author keywords

[No Author keywords available]

Indexed keywords

ELECTRONIC TRADING; FINANCIAL MARKETS; FORECASTING; INTELLIGENT COMPUTING; MACHINE LEARNING;

EID: 84908121629     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CIFEr.2014.6924051     Document Type: Conference Paper
Times cited : (5)

References (44)
  • 1
    • 0002528209 scopus 로고
    • The behavior of stock-market prices
    • E. F. Fama, "The behavior of stock-market prices" The journal of Business, vol. 38, no. 1, pp. 34-105, 1965
    • (1965) The Journal of Business , vol.38 , Issue.1 , pp. 34-105
    • Fama, E.F.1
  • 3
    • 0024880831 scopus 로고
    • Multilayer feedforward networks are universal approximators
    • K. Hornik, M. Stinchcombe, and H. White, "Multilayer feedforward networks are universal approximators" Neural networks, vol. 2, no. 5, pp. 359-366, 1989
    • (1989) Neural Networks , vol.2 , Issue.5 , pp. 359-366
    • Hornik, K.1    Stinchcombe, M.2    White, H.3
  • 4
    • 0037102687 scopus 로고    scopus 로고
    • Illuminating the black box: A randomization approach for understanding variable contributions in artificial neural networks
    • J. D. Olden and D. A. Jackson, "Illuminating the black box: a randomization approach for understanding variable contributions in artificial neural networks" Ecological Modelling, vol. 154, no. 1-2, pp. 135-150, 2002
    • (2002) Ecological Modelling , vol.154 , Issue.1-2 , pp. 135-150
    • Olden, J.D.1    Jackson, D.A.2
  • 7
    • 67349239812 scopus 로고    scopus 로고
    • Forecasting stock market shortterm trends using a neuro-fuzzy based methodology
    • G. S. Atsalakis and K. P. Valavanis, "Forecasting stock market shortterm trends using a neuro-fuzzy based methodology" Expert Systems with Applications, vol. 36, no. 7, pp. 10696-10707, 2009
    • (2009) Expert Systems with Applications , vol.36 , Issue.7 , pp. 10696-10707
    • Atsalakis, G.S.1    Valavanis, K.P.2
  • 8
    • 58749094998 scopus 로고    scopus 로고
    • Surveying stock market forecasting techniques-Part II: Soft computing methods
    • G. S. Atsalakis and K. P. Valavanis, "Surveying stock market forecasting techniques-Part II: Soft computing methods" Expert Systems with Applications, vol. 36, no. 3, pp. 5932-5941, 2009
    • (2009) Expert Systems with Applications , vol.36 , Issue.3 , pp. 5932-5941
    • Atsalakis, G.S.1    Valavanis, K.P.2
  • 9
    • 77957840499 scopus 로고    scopus 로고
    • An adaptive network-based fuzzy inference system (ANFIS) for the prediction of stock market return: The case of the Istanbul stock exchange
    • M. A. Boyacioglu and D. Avci, "An adaptive network-based fuzzy inference system (ANFIS) for the prediction of stock market return: the case of the Istanbul stock exchange" Expert Systems with Applications, vol. 37, no. 12, pp. 7908-7912, 2010
    • (2010) Expert Systems with Applications , vol.37 , Issue.12 , pp. 7908-7912
    • Boyacioglu, M.A.1    Avci, D.2
  • 10
    • 0035255160 scopus 로고    scopus 로고
    • An intelligent stock trading decision support system through integration of genetic algorithm based fuzzy neural network and artificial neural network
    • R. J. Kuo, C. Chen, and Y. Hwang, "An intelligent stock trading decision support system through integration of genetic algorithm based fuzzy neural network and artificial neural network" Fuzzy Sets and Systems, vol. 118, no. 1, pp. 21-45, 2001
    • (2001) Fuzzy Sets and Systems , vol.118 , Issue.1 , pp. 21-45
    • Kuo, R.J.1    Chen, C.2    Hwang, Y.3
  • 13
    • 0001023715 scopus 로고    scopus 로고
    • Application of support vector machines in financial time series forecasting
    • F. E. Tay and L. Cao, "Application of support vector machines in financial time series forecasting" Omega, vol. 29, no. 4, pp. 309-317, 2001
    • (2001) Omega , vol.29 , Issue.4 , pp. 309-317
    • Tay, F.E.1    Cao, L.2
  • 14
    • 0742268991 scopus 로고    scopus 로고
    • Support vector machine with adaptive parameters in financial time series forecasting
    • L.-J. Cao and F. E. H. Tay, "Support vector machine with adaptive parameters in financial time series forecasting" Neural Networks, IEEE Transactions on, vol. 14, no. 6, pp. 1506-1518, 2003
    • (2003) Neural Networks IEEE Transactions on , vol.14 , Issue.6 , pp. 1506-1518
    • Cao, L.-J.1    Tay, F.E.H.2
  • 15
    • 54049100450 scopus 로고    scopus 로고
    • Regularized least squares fuzzy support vector regression for financial time series forecasting
    • R. Khemchandani, S. Chandra, and others, "Regularized least squares fuzzy support vector regression for financial time series forecasting" Expert Systems with Applications, vol. 36, no. 1, pp. 132-138, 2009
    • (2009) Expert Systems with Applications , vol.36 , Issue.1 , pp. 132-138
    • Khemchandani, R.1    Chandra, S.2
  • 17
  • 19
    • 58949100905 scopus 로고    scopus 로고
    • Forecasting histogram time series with knearest neighbours methods
    • J. Arroyo and C. Mat, "Forecasting histogram time series with knearest neighbours methods" International Journal of Forecasting, vol. 25, no. 1, pp. 192-207, 2009
    • (2009) International Journal of Forecasting , vol.25 , Issue.1 , pp. 192-207
    • Arroyo, J.1    Mat, C.2
  • 21
    • 45249128876 scopus 로고
    • Combining forecasts: A review and annotated bibliography
    • R. T. Clemen, "Combining forecasts: A review and annotated bibliography" International Journal of Forecasting, vol. 5, no. 4, pp. 559-583, 1989
    • (1989) International Journal of Forecasting , vol.5 , Issue.4 , pp. 559-583
    • Clemen, R.T.1
  • 22
    • 79956370913 scopus 로고    scopus 로고
    • Forecasting the NN5 time series with hybrid models
    • J. D. Wichard, "Forecasting the NN5 time series with hybrid models" International Journal of Forecasting, vol. 27, no. 3, pp. 700-707, 2011
    • (2011) International Journal of Forecasting , vol.27 , Issue.3 , pp. 700-707
    • Wichard, J.D.1
  • 24
    • 33750439450 scopus 로고    scopus 로고
    • A hybrid support vector machines and logistic regression approach for forecasting intermittent demand of spare parts
    • Z. Hua and B. Zhang, "A hybrid support vector machines and logistic regression approach for forecasting intermittent demand of spare parts" Applied Mathematics and Computation, vol. 181, no. 2, pp. 1035-1048, 2006
    • (2006) Applied Mathematics and Computation , vol.181 , Issue.2 , pp. 1035-1048
    • Hua, Z.1    Zhang, B.2
  • 25
    • 78751608738 scopus 로고    scopus 로고
    • A novel hybridization of artificial neural networks and {ARIMA} models for time series forecasting
    • M. Khashei and M. Bijari, "A novel hybridization of artificial neural networks and {ARIMA} models for time series forecasting" Applied Soft Computing, vol. 11, no. 2, pp. 2664-2675, 2011
    • (2011) Applied Soft Computing , vol.11 , Issue.2 , pp. 2664-2675
    • Khashei, M.1    Bijari, M.2
  • 26
    • 34249753618 scopus 로고
    • Support-vector networks
    • C. Cortes and V. Vapnik, "Support-vector networks" Machine learning, vol. 20, no. 3, pp. 273-297, 1995
    • (1995) Machine Learning , vol.20 , Issue.3 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 28
    • 4043137356 scopus 로고    scopus 로고
    • A tutorial on support vector regression
    • A. J. Smola and B. Schlkopf, "A tutorial on support vector regression" Statistics and computing, vol. 14, no. 3, pp. 199-222, 2004
    • (2004) Statistics and Computing , vol.14 , Issue.3 , pp. 199-222
    • Smola, A.J.1    Schlkopf, B.2
  • 31
    • 11244351634 scopus 로고    scopus 로고
    • An approach for on-line extraction of fuzzy rules using a self-organising fuzzy neural network
    • G. Leng, T. M. McGinnity, and G. Prasad, "An approach for on-line extraction of fuzzy rules using a self-organising fuzzy neural network" Fuzzy Sets and Systems, vol. 150, no. 2, pp. 211-243, 2005
    • (2005) Fuzzy Sets and Systems , vol.150 , Issue.2 , pp. 211-243
    • Leng, G.1    McGinnity, T.M.2    Prasad, G.3
  • 33
    • 0029406913 scopus 로고
    • A new approach to rule learning based on fusion of fuzzy logic and neural networks
    • R.-P. Li and M. Mukaidono, "A new approach to rule learning based on fusion of fuzzy logic and neural networks" IEICE TRANSACTIONS on Information and Systems, vol. 78, no. 11, pp. 1509-1514, 1995
    • (1995) IEICE TRANSACTIONS on Information and Systems , vol.78 , Issue.11 , pp. 1509-1514
    • Li, R.-P.1    Mukaidono, M.2
  • 34
    • 0021892282 scopus 로고
    • Fuzzy identification of systems and its applications to modeling and control
    • T. Takagi and M. Sugeno, "Fuzzy identification of systems and its applications to modeling and control" Systems, Man and Cybernetics, IEEE Transactions on, no. 1, pp. 116-132, 1985
    • (1985) Systems, Man and Cybernetics IEEE Transactions on , Issue.1 , pp. 116-132
    • Takagi, T.1    Sugeno, M.2
  • 36
    • 8444234276 scopus 로고    scopus 로고
    • An on-line algorithm for creating self-organizing fuzzy neural networks
    • G. Leng, G. Prasad, and T. M. McGinnity, "An on-line algorithm for creating self-organizing fuzzy neural networks" Neural Networks, vol. 17, no. 10, pp. 1477-1493, 2004
    • (2004) Neural Networks , vol.17 , Issue.10 , pp. 1477-1493
    • Leng, G.1    Prasad, G.2    McGinnity, T.M.3
  • 38
    • 0037243071 scopus 로고    scopus 로고
    • Time series forecasting using a hybrid ARIMA and neural network model
    • G. P. Zhang, "Time series forecasting using a hybrid ARIMA and neural network model" Neurocomputing, vol. 50, pp. 159-175, 2003
    • (2003) Neurocomputing , vol.50 , pp. 159-175
    • Zhang, G.P.1
  • 44
    • 33749517168 scopus 로고    scopus 로고
    • Another look at measures of forecast accuracy
    • R. J. Hyndman and A. B. Koehler, "Another look at measures of forecast accuracy" International Journal of Forecasting, vol. 22, no. 4, pp. 679-688, 2006.
    • (2006) International Journal of Forecasting , vol.22 , Issue.4 , pp. 679-688
    • Hyndman, R.J.1    Koehler, A.B.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.