메뉴 건너뛰기




Volumn 71, Issue 4, 2014, Pages 283-300

PAC-learning in the presence of one-sided classification noise

Author keywords

Classification noise; Computational complexity; Data structures; Learning algorithm

Indexed keywords


EID: 84908093676     PISSN: 10122443     EISSN: 15737470     Source Type: Journal    
DOI: 10.1007/s10472-012-9325-7     Document Type: Article
Times cited : (2)

References (28)
  • 2
    • 0000492326 scopus 로고
    • Learning from noisy examples
    • Angluin, D., Laird, P.: Learning from noisy examples. Mach. Learn. 2(4), 343–370 (1988)
    • (1988) Mach. Learn. , vol.2 , Issue.4 , pp. 343-370
    • Angluin, D.1    Laird, P.2
  • 5
    • 0032302519 scopus 로고    scopus 로고
    • Approximating hyper-rectangles: learning and pseudorandom sets
    • Auer, P., Long, P.M., Srinivasan, A.: Approximating hyper-rectangles: learning and pseudorandom sets. J. Comput. Syst. Sci. 57(3), 376–388 (1998)
    • (1998) J. Comput. Syst. Sci. , vol.57 , Issue.3 , pp. 376-388
    • Auer, P.1    Long, P.M.2    Srinivasan, A.3
  • 6
    • 0031704194 scopus 로고    scopus 로고
    • A note on learning from multiple-instance examples
    • Blum, A., Kalai, A.: A note on learning from multiple-instance examples. Mach. Learn. 30(1), 23–29 (1998)
    • (1998) Mach. Learn. , vol.30 , Issue.1 , pp. 23-29
    • Blum, A.1    Kalai, A.2
  • 9
    • 0030649484 scopus 로고    scopus 로고
    • Solving the multiple instance problem with axis-parallel rectangles
    • Dietterich, T.G., Lathrop, R.H., Lozano-Pérez, T.: Solving the multiple instance problem with axis-parallel rectangles. Artif. Intell. 89(1–2), 31–71 (1997)
    • (1997) Artif. Intell. , vol.89 , Issue.1-2 , pp. 31-71
    • Dietterich, T.G.1    Lathrop, R.H.2    Lozano-Pérez, T.3
  • 10
    • 84866397303 scopus 로고    scopus 로고
    • On multiple-instance learning of halfspaces
    • Diochnos, D.I., Sloan, R.H., Turan, G.: On multiple-instance learning of halfspaces. Inf. Process. Lett. 112(23), 933–936 (2012)
    • (2012) Inf. Process. Lett. , vol.112 , Issue.23 , pp. 933-936
    • Diochnos, D.I.1    Sloan, R.H.2    Turan, G.3
  • 11
    • 0024739191 scopus 로고
    • A general lower bound on the number of examples needed for learning
    • Ehrenfeucht, A., Haussler, D., Kearns, M., Valiant, L.: A general lower bound on the number of examples needed for learning. Inf. Comput. 82(3), 247–261 (1989)
    • (1989) Inf. Comput. , vol.82 , Issue.3 , pp. 247-261
    • Ehrenfeucht, A.1    Haussler, D.2    Kearns, M.3    Valiant, L.4
  • 12
    • 0002192516 scopus 로고
    • Decision theoretic generalizations of the PAC model for neural net and other learning applications
    • Haussler, D.: Decision theoretic generalizations of the PAC model for neural net and other learning applications. Inf. Comput. 100(1), 78–150 (1992)
    • (1992) Inf. Comput. , vol.100 , Issue.1 , pp. 78-150
    • Haussler, D.1
  • 13
    • 0027580356 scopus 로고
    • Very simple classification rules perform well on most commonly used datasets
    • Holte, R.C.: Very simple classification rules perform well on most commonly used datasets. Mach. Learn. 11(1), 63–90 (1993)
    • (1993) Mach. Learn. , vol.11 , Issue.1 , pp. 63-90
    • Holte, R.C.1
  • 14
    • 0032202014 scopus 로고    scopus 로고
    • Efficient noise-tolerant learning from statistical queries
    • Kearns, M.: Efficient noise-tolerant learning from statistical queries. J. Assoc. Comput. Mach. 45(6), 983–1006 (1998)
    • (1998) J. Assoc. Comput. Mach. , vol.45 , Issue.6 , pp. 983-1006
    • Kearns, M.1
  • 15
    • 0001553979 scopus 로고
    • Toward efficient agnostic learning
    • Kearns, M.J., Schapire, R.E., Sellie, L.: Toward efficient agnostic learning. Mach. Learn. 17(2), 115–141 (1994)
    • (1994) Mach. Learn. , vol.17 , Issue.2 , pp. 115-141
    • Kearns, M.J.1    Schapire, R.E.2    Sellie, L.3
  • 19
    • 0023642097 scopus 로고
    • Obtaining lower bounds using artificial components
    • Ramanan, P.: Obtaining lower bounds using artificial components. Inf. Process. Lett. 24(4), 243–246 (1987)
    • (1987) Inf. Process. Lett. , vol.24 , Issue.4 , pp. 243-246
    • Ramanan, P.1
  • 21
    • 0030128944 scopus 로고    scopus 로고
    • General bounds on the number of examples needed for learning probabilistic concepts
    • Simon, H.U.: General bounds on the number of examples needed for learning probabilistic concepts. J. Comput. Syst. Sci. 52(2), 239–255 (1996)
    • (1996) J. Comput. Syst. Sci. , vol.52 , Issue.2 , pp. 239-255
    • Simon, H.U.1
  • 22
    • 0002943521 scopus 로고
    • Lower bounds for algebraic decision trees
    • Steele, J.M., Yao, A.C.: Lower bounds for algebraic decision trees. J. Algorithms 3(1), 1–8 (1982)
    • (1982) J. Algorithms , vol.3 , Issue.1 , pp. 1-8
    • Steele, J.M.1    Yao, A.C.2
  • 23
    • 0021518106 scopus 로고
    • A theory of the learnable
    • Valiant, L.G.: A theory of the learnable. Commun. ACM 27(11), 1134–1142 (1984)
    • (1984) Commun. ACM , vol.27 , Issue.11 , pp. 1134-1142
    • Valiant, L.G.1
  • 24
    • 0025492125 scopus 로고
    • Maximizing the predictive value of production rules
    • Weiss, S.M., Galen, R.S., Tadepalli, P.: Maximizing the predictive value of production rules. Artif. Intell. 45(1–2), 47–71 (1990)
    • (1990) Artif. Intell. , vol.45 , Issue.1-2 , pp. 47-71
    • Weiss, S.M.1    Galen, R.S.2    Tadepalli, P.3
  • 28
    • 15544389390 scopus 로고    scopus 로고
    • Multi-instance learning based web mining
    • Zhou, Z.H., Jiang, K., Li, M.: Multi-instance learning based web mining. Appl. Intell. 22(2), 135–147 (2005)
    • (2005) Appl. Intell. , vol.22 , Issue.2 , pp. 135-147
    • Zhou, Z.H.1    Jiang, K.2    Li, M.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.