메뉴 건너뛰기




Volumn 117, Issue 2, 2014, Pages 247-256

Feature extraction of the first difference of EMG time series for EMG pattern recognition

Author keywords

Differencing technique; Dynamic motions; Electromyography (EMG); Muscle computer interface; Non stationary signal

Indexed keywords

DISCRIMINANT ANALYSIS; ELECTROMYOGRAPHY; PATTERN RECOGNITION; TIME DOMAIN ANALYSIS; TIME SERIES;

EID: 84908028300     PISSN: 01692607     EISSN: 18727565     Source Type: Journal    
DOI: 10.1016/j.cmpb.2014.06.013     Document Type: Article
Times cited : (114)

References (49)
  • 1
    • 84862799596 scopus 로고    scopus 로고
    • The effects of load, flexion, twisting and window size on the stationarity of trunk muscle EMG signals
    • Cho Y.J., Kim J.Y. The effects of load, flexion, twisting and window size on the stationarity of trunk muscle EMG signals. Int. J. Indust. Ergonom. 2012, 42:287-292.
    • (2012) Int. J. Indust. Ergonom. , vol.42 , pp. 287-292
    • Cho, Y.J.1    Kim, J.Y.2
  • 2
    • 0030744282 scopus 로고    scopus 로고
    • Normality and stationarity of EMG signals of elbow flexor muscles during ramp and step isometric contractions
    • Bilodeau M., Cincera M., Arsenault A.B., Gravel D. Normality and stationarity of EMG signals of elbow flexor muscles during ramp and step isometric contractions. J. Electromyogra. Kinesiol. 1997, 7:87-96.
    • (1997) J. Electromyogra. Kinesiol. , vol.7 , pp. 87-96
    • Bilodeau, M.1    Cincera, M.2    Arsenault, A.B.3    Gravel, D.4
  • 4
    • 81855176016 scopus 로고    scopus 로고
    • Identification of EMG signals using discriminant analysis and SVM classifier
    • Alkan A., Günay M. Identification of EMG signals using discriminant analysis and SVM classifier. Expert Syst. Appl. 2012, 39:44-47.
    • (2012) Expert Syst. Appl. , vol.39 , pp. 44-47
    • Alkan, A.1    Günay, M.2
  • 6
    • 23944494134 scopus 로고    scopus 로고
    • Classification of surface EMG signal using relative wavelet packet energy
    • Hu X., Wang Z., Ren X. Classification of surface EMG signal using relative wavelet packet energy. Comp. Methods Programs Biomed. 2005, 79:189-195.
    • (2005) Comp. Methods Programs Biomed. , vol.79 , pp. 189-195
    • Hu, X.1    Wang, Z.2    Ren, X.3
  • 10
    • 0042664129 scopus 로고    scopus 로고
    • A robust, real-time control scheme for multifunction myoelectric control
    • Englehart K., Hudgins B. A robust, real-time control scheme for multifunction myoelectric control. IEEE Trans. Biomed. Eng. 2003, 50:848-854.
    • (2003) IEEE Trans. Biomed. Eng. , vol.50 , pp. 848-854
    • Englehart, K.1    Hudgins, B.2
  • 11
    • 0035088706 scopus 로고    scopus 로고
    • A wavelet-based continuous classification scheme for multifunction myoelectric control
    • Englehart K., Hudgins B., Parker P.A. A wavelet-based continuous classification scheme for multifunction myoelectric control. IEEE Trans. Biomed. Eng. 2001, 48:302-311.
    • (2001) IEEE Trans. Biomed. Eng. , vol.48 , pp. 302-311
    • Englehart, K.1    Hudgins, B.2    Parker, P.A.3
  • 14
    • 0034978507 scopus 로고    scopus 로고
    • Time-frequency parameters of the surface myoelectric signal for assessing muscle fatigue during cyclic dynamic contractions
    • Bonato P., Roy S.H., Knaflitz M., De Luca C.J. Time-frequency parameters of the surface myoelectric signal for assessing muscle fatigue during cyclic dynamic contractions. IEEE Trans. Biomed. Eng. 2001, 48:745-753.
    • (2001) IEEE Trans. Biomed. Eng. , vol.48 , pp. 745-753
    • Bonato, P.1    Roy, S.H.2    Knaflitz, M.3    De Luca, C.J.4
  • 15
    • 84863794828 scopus 로고    scopus 로고
    • Dynamic hand motion recognition based on transient and steady-state EMG signals
    • Yang D., Zhao J., Jiang L., Liu H. Dynamic hand motion recognition based on transient and steady-state EMG signals. Int. J. Humanoid Robot. 2012, 9:1250007.
    • (2012) Int. J. Humanoid Robot. , vol.9 , pp. 1250007
    • Yang, D.1    Zhao, J.2    Jiang, L.3    Liu, H.4
  • 16
    • 79955677322 scopus 로고    scopus 로고
    • Influence of the training set on the accuracy of surface EMG classification in dynamic contractions for the control of multifunction prostheses
    • Lorrain T., Jiang N., Farina D. Influence of the training set on the accuracy of surface EMG classification in dynamic contractions for the control of multifunction prostheses. J. NeuroEng. Rehab. 2011, 8:25.
    • (2011) J. NeuroEng. Rehab. , vol.8 , pp. 25
    • Lorrain, T.1    Jiang, N.2    Farina, D.3
  • 17
    • 47649094596 scopus 로고    scopus 로고
    • Support vector machine-based classification scheme for myoelectric control applied to upper limb
    • Oskoei M.A., Hu H. Support vector machine-based classification scheme for myoelectric control applied to upper limb. IEEE Trans. Biomed. Eng. 2008, 55:1956-1965.
    • (2008) IEEE Trans. Biomed. Eng. , vol.55 , pp. 1956-1965
    • Oskoei, M.A.1    Hu, H.2
  • 19
    • 0032727526 scopus 로고    scopus 로고
    • Classification of the myoelectric signal using time-frequency based representation
    • Englehart K., Hudgins B., Parker P.A., Stevenson M. Classification of the myoelectric signal using time-frequency based representation. Med. Eng. Phys. 1999, 21:431-438.
    • (1999) Med. Eng. Phys. , vol.21 , pp. 431-438
    • Englehart, K.1    Hudgins, B.2    Parker, P.A.3    Stevenson, M.4
  • 20
    • 84871160897 scopus 로고    scopus 로고
    • Investigating long-term effects of feature extraction methods for continuous EMG pattern classification
    • Phinyomark A., Phukpattaranont P., Limsakul C. Investigating long-term effects of feature extraction methods for continuous EMG pattern classification. Fluct. Noise Lett. 2012, 11(4):1250028.
    • (2012) Fluct. Noise Lett. , vol.11 , Issue.4 , pp. 1250028
    • Phinyomark, A.1    Phukpattaranont, P.2    Limsakul, C.3
  • 25
    • 79951671569 scopus 로고    scopus 로고
    • Comparison of k-nearest neighbor, quadratic discriminant and linear discriminant analysis in classification of electromyogram signals based on the wrist-motion directions
    • Kim K.S., Choi H.H., Moon C.S., Mun C.W. Comparison of k-nearest neighbor, quadratic discriminant and linear discriminant analysis in classification of electromyogram signals based on the wrist-motion directions. Curr. Appl. Phys. 2011, 11:740-745.
    • (2011) Curr. Appl. Phys. , vol.11 , pp. 740-745
    • Kim, K.S.1    Choi, H.H.2    Moon, C.S.3    Mun, C.W.4
  • 26
    • 84857653669 scopus 로고    scopus 로고
    • Feature reduction and selection for EMG signal classification
    • Phinyomark A., Phukpattaranont P., Limsakul C. Feature reduction and selection for EMG signal classification. Expert Syst. Appl. 2012, 39:7420-7431.
    • (2012) Expert Syst. Appl. , vol.39 , pp. 7420-7431
    • Phinyomark, A.1    Phukpattaranont, P.2    Limsakul, C.3
  • 27
    • 84877002299 scopus 로고    scopus 로고
    • Classification of nine directions using the maximum likelihood estimation based on electromyogram of both forearms
    • Yu S., Jeong E., Hong K., Lee S. Classification of nine directions using the maximum likelihood estimation based on electromyogram of both forearms. Biomed. Eng. Lett. 2012, 2:129-137.
    • (2012) Biomed. Eng. Lett. , vol.2 , pp. 129-137
    • Yu, S.1    Jeong, E.2    Hong, K.3    Lee, S.4
  • 33
    • 33747197474 scopus 로고    scopus 로고
    • An examination of the runs test, reverse arrangements test, and modified reverse arrangement test for assessing surface EMG signal stationarity
    • Beck T.W., Housh T.J., Weir J.P., Cramer J.T., Vardaxis V., Johnson G.O., Coburn J.W., Malek M.H., Mielke M. An examination of the runs test, reverse arrangements test, and modified reverse arrangement test for assessing surface EMG signal stationarity. J. Neurosci. Methods 2006, 156:242-248.
    • (2006) J. Neurosci. Methods , vol.156 , pp. 242-248
    • Beck, T.W.1    Housh, T.J.2    Weir, J.P.3    Cramer, J.T.4    Vardaxis, V.5    Johnson, G.O.6    Coburn, J.W.7    Malek, M.H.8    Mielke, M.9
  • 34
    • 77952443226 scopus 로고    scopus 로고
    • Study of stability of time-domain features for electromyographic pattern recognition
    • Tkach D., Huang H., Kuiken T.A. Study of stability of time-domain features for electromyographic pattern recognition. J. NeuroEng. Rehab. 2010, 7:21.
    • (2010) J. NeuroEng. Rehab. , vol.7 , pp. 21
    • Tkach, D.1    Huang, H.2    Kuiken, T.A.3
  • 36
    • 0037627472 scopus 로고    scopus 로고
    • Control of multifunctional prosthetic hands by processing the electromyographic signal
    • Zecca M., Micera S., Carrozza M.C., Dario P. Control of multifunctional prosthetic hands by processing the electromyographic signal. Crit. Rev. Biomed. Eng. 2002, 30:459-485.
    • (2002) Crit. Rev. Biomed. Eng. , vol.30 , pp. 459-485
    • Zecca, M.1    Micera, S.2    Carrozza, M.C.3    Dario, P.4
  • 39
    • 0037763048 scopus 로고    scopus 로고
    • Evaluation of the forearm EMG signal features for the control of a prosthetic hand
    • Boostani R., Moradi M.H. Evaluation of the forearm EMG signal features for the control of a prosthetic hand. Physiol. Measure. 2003, 24:309-319.
    • (2003) Physiol. Measure. , vol.24 , pp. 309-319
    • Boostani, R.1    Moradi, M.H.2
  • 40
    • 0033822989 scopus 로고    scopus 로고
    • Comparison of algorithms for estimation of EMG variables during voluntary isometric contractions
    • Farina D., Merletti R. Comparison of algorithms for estimation of EMG variables during voluntary isometric contractions. J. Electromyogra. Kinesiol. 2000, 10:337-349.
    • (2000) J. Electromyogra. Kinesiol. , vol.10 , pp. 337-349
    • Farina, D.1    Merletti, R.2
  • 41
    • 35348946436 scopus 로고    scopus 로고
    • Myoelectric control systems - a survey
    • Oskoei M.A., Hu H. Myoelectric control systems - a survey. Biomed. Sig. Process. Cont. 2007, 2:275-294.
    • (2007) Biomed. Sig. Process. Cont. , vol.2 , pp. 275-294
    • Oskoei, M.A.1    Hu, H.2
  • 42
    • 79959305690 scopus 로고    scopus 로고
    • Isometric fatigue patterns in time and time-frequency domains of triceps surae muscle in different knee positions
    • Pereira G.R., de Oliveira L.F., Nadal J. Isometric fatigue patterns in time and time-frequency domains of triceps surae muscle in different knee positions. J. Electromyogra. Kinesiol. 2011, 21:572-578.
    • (2011) J. Electromyogra. Kinesiol. , vol.21 , pp. 572-578
    • Pereira, G.R.1    de Oliveira, L.F.2    Nadal, J.3
  • 43
    • 45849112825 scopus 로고    scopus 로고
    • Correlations between short-time Fourier- and continuous wavelet transforms in the analysis of localized back and hip muscle fatigue during isometric contractions
    • Coorevits P., Danneels L., Cambier D., Ramon H., Druyts H., Karlsson J.S., Moor G.D., Vanderstraeten G. Correlations between short-time Fourier- and continuous wavelet transforms in the analysis of localized back and hip muscle fatigue during isometric contractions. J. Electromyogra. Kinesiol. 2008, 18:637-644.
    • (2008) J. Electromyogra. Kinesiol. , vol.18 , pp. 637-644
    • Coorevits, P.1    Danneels, L.2    Cambier, D.3    Ramon, H.4    Druyts, H.5    Karlsson, J.S.6    Moor, G.D.7    Vanderstraeten, G.8
  • 45
    • 0021646085 scopus 로고
    • On surface EMG spectral characterization and its application in diagnostic classification
    • Inbar G.J., Noujaim A.E. On surface EMG spectral characterization and its application in diagnostic classification. IEEE Trans. Biomed. Eng. 1984, 31:597-604.
    • (1984) IEEE Trans. Biomed. Eng. , vol.31 , pp. 597-604
    • Inbar, G.J.1    Noujaim, A.E.2
  • 47
    • 0003355005 scopus 로고    scopus 로고
    • Standards for Reporting EMG data
    • Standards for Reporting EMG data J. Electromyogra. Kinesiol. 1999, 9:III-IV.
    • (1999) J. Electromyogra. Kinesiol. , vol.9 , pp. 3-4
  • 49
    • 78649970208 scopus 로고    scopus 로고
    • Decoding subtle forearm flexions using fractal features of surface electromyogram from single and multiple sensors
    • Arjunan S.P., Kumar D.K. Decoding subtle forearm flexions using fractal features of surface electromyogram from single and multiple sensors. J. NeuroEng. Rehab. 2010, 7:53.
    • (2010) J. NeuroEng. Rehab. , vol.7 , pp. 53
    • Arjunan, S.P.1    Kumar, D.K.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.