메뉴 건너뛰기




Volumn 12, Issue 3, 2013, Pages

EMG amplitude estimators based on probability distribution for muscle-computer interface

Author keywords

Electromyography (EMG); feature extraction; fluctuating signal; probability density function (PDF); signal to noise ratio (SNR)

Indexed keywords


EID: 84884578689     PISSN: 02194775     EISSN: None     Source Type: Journal    
DOI: 10.1142/S0219477513500168     Document Type: Article
Times cited : (14)

References (34)
  • 1
    • 84870063236 scopus 로고    scopus 로고
    • A comparative study of wavelet families for classification of wrist motions
    • M. Hariharan, C. Y. Fook, R. Sindhu, B. Ilias S. Yaacob, A comparative study of wavelet families for classification of wrist motions, Comput. Electr. Eng. 38 2012 1798-1807.
    • (2012) Comput. Electr. Eng , vol.38 , pp. 1798-1807
    • Hariharan, M.1    Fook, C.Y.2    Sindhu, R.3    Ilias, B.4    Yaacob, S.5
  • 4
    • 79951671569 scopus 로고    scopus 로고
    • Comparison of k-nearest neighbor, quadratic discriminant linear discriminant analysis in classification of electromyogram signals based on the wrist-motion directions
    • K. S. Kim, H. H. Choi, C. S. Moon C. W. Mun, Comparison of k-nearest neighbor, quadratic discriminant linear discriminant analysis in classification of electromyogram signals based on the wrist-motion directions, Curr. Appl. Phys. 11 2011 740-745.
    • (2011) Curr. Appl. Phys , vol.11 , pp. 740-745
    • Kim, K.S.1    Choi, H.H.2    Moon, C.S.3    Mun, C.W.4
  • 5
    • 77952443226 scopus 로고    scopus 로고
    • Study of stability of time-domain features for electromyographic pattern recognition
    • D. Tkach, H. Huang T. A. Kuiken, Study of stability of time-domain features for electromyographic pattern recognition, J. Neuroeng. Rehabil. 7 2010 21.
    • (2010) J. Neuroeng. Rehabil , vol.7 , pp. 21
    • Tkach, D.1    Huang, H.2    Kuiken, T.A.3
  • 6
    • 47649094596 scopus 로고    scopus 로고
    • Support vector machine-based classification scheme for myoelectric control applied to upper limb
    • M. A. Oskoei H. Hu, Support vector machine-based classification scheme for myoelectric control applied to upper limb, IEEE Trans. Biomed. Eng. 55 2008 1956-1965.
    • (2008) IEEE Trans. Biomed. Eng , vol.55 , pp. 1956-1965
    • Oskoei, M.A.1    Hu, H.2
  • 8
    • 84875717686 scopus 로고    scopus 로고
    • Design of weable, low power, single supply surface EMG extractor unit for wireless monitoring
    • Nanotechnology and Biosensors Dubai December
    • A. S. Kundu, O. Mazumder S. Bhaumik, Design of weable, low power, single supply surface EMG extractor unit for wireless monitoring, Proc. 2nd Int. Conf. Nanotechnology Biosensors, Dubai December, 2011, pp. 69-74.
    • (2011) Proc. 2nd Int. Conf , pp. 69-74
    • Kundu, A.S.1    Mazumder, O.2    Bhaumik, S.3
  • 9
    • 77249161100 scopus 로고    scopus 로고
    • Portable hand motion classifier for multi-channel surface electromyography recognition using grey relational analysis
    • Y. C. Du, C. H. Lin, L. Y. Shyu T. Chen, Portable hand motion classifier for multi-channel surface electromyography recognition using grey relational analysis, Expert Syst. Appl. 37 2010 4283-4291.
    • (2010) Expert Syst. Appl , vol.37 , pp. 4283-4291
    • Du, Y.C.1    Lin, C.H.2    Shyu, L.Y.3    Chen, T.4
  • 10
    • 35348885605 scopus 로고    scopus 로고
    • Intimate interfaces in action: Assessing the usability subtlety of EMG-based motionless gestures
    • Human Factors in Computing Systems, San Jose, California April-May
    • E. Costanza, S. A. Inverso, R. Allen P. Maes, Intimate interfaces in action: Assessing the usability subtlety of EMG-based motionless gestures, Proc. SIGCHI Conf. Human Factors in Computing Systems, San Jose, California April-May, 2007, pp. 819-828.
    • (2007) Proc. SIGCHI Conf , pp. 819-828
    • Costanza, E.1    Inverso, S.A.2    Allen, R.3    Maes, P.4
  • 11
    • 79955677322 scopus 로고    scopus 로고
    • Influence of the training set on the accuracy of surface EMG classification in dynamic contractions for the control of multifunction prostheses
    • T. Lorrain, N. Jiang D. Farina, Influence of the training set on the accuracy of surface EMG classification in dynamic contractions for the control of multifunction prostheses, J. Neuroeng. Rehabil. 8 2011 25.
    • (2011) J. Neuroeng. Rehabil , vol.8 , pp. 25
    • Lorrain, T.1    Jiang, N.2    Farina, D.3
  • 12
    • 0042664129 scopus 로고    scopus 로고
    • Real-time control scheme for multifunction myoelectric control
    • K. Englehart B. Hudgins, A robust, real-time control scheme for multifunction myoelectric control, IEEE Trans. Biomed. Eng. 50 2003 848-854.
    • (2003) IEEE Trans. Biomed. Eng , vol.50 , pp. 848-854
    • Englehart, K.1    Hudgins, B.2    Robust, A.3
  • 13
    • 84871160897 scopus 로고    scopus 로고
    • Investigating long-term effects of feature extraction methods for continuous EMG pattern classification
    • A. Phinyomark, P. Phukpattaranont C. Limsakul, Investigating long-term effects of feature extraction methods for continuous EMG pattern classification, Fluctuation Noise Lett. 11 2012 1250028.
    • (2012) Fluctuation Noise Lett , vol.11 , pp. 1250028
    • Phinyomark, A.1    Phukpattaranont, P.2    Limsakul, C.3
  • 15
    • 0033017314 scopus 로고    scopus 로고
    • Probability density of the surface electromyogram its relation to amplitude detectors
    • E. A. Clancy N. Hogan, Probability density of the surface electromyogram its relation to amplitude detectors, IEEE Trans. Biomed. Eng. 46 1999 730-739.
    • (1999) IEEE Trans. Biomed. Eng , vol.46 , pp. 730-739
    • Clancy, E.A.1    Hogan, N.2
  • 16
    • 0019226631 scopus 로고
    • Myoelectric signal processing: Optimal estimation applied to electromyography-Part I: Deviation of the optimal myoprocessor
    • N. Hogan R. W. Mann, Myoelectric signal processing: Optimal estimation applied to electromyography-Part I: Deviation of the optimal myoprocessor, IEEE Trans. Biomed. Eng. BME-27 1980 382-395.
    • (1980) IEEE Trans. Biomed. Eng. BME-27 , pp. 382-395
    • Hogan, N.1    Mann, R.W.2
  • 17
    • 0019226632 scopus 로고
    • Myoelectric signal processing: Optimal estimation applied to electromyography-Part II: Experimental demonstration of optimal myoprocessor performance
    • N. Hogan R. W. Mann, Myoelectric signal processing: Optimal estimation applied to electromyography-Part II: Experimental Demonstration of Optimal Myoprocessor Performance, IEEE Trans. Biomed. Eng. BME-27 1980 396-410.
    • (1980) IEEE Trans. Biomed. Eng. BME-27 , pp. 396-410
    • Hogan, N.1    Mann, R.W.2
  • 18
    • 84870540979 scopus 로고    scopus 로고
    • A note on the probability distribution function of the surface electromyogram signal
    • K. Nazarpour, A. H. Al-Timemy, G. Bugmann A. Jackson, A note on the probability distribution function of the surface electromyogram signal, Brain Res. Bull. 90 2013 88-91.
    • (2013) Brain Res. Bull , vol.90 , pp. 88-91
    • Nazarpour, K.1    Al-Timemy, A.H.2    Bugmann, G.3    Jackson, A.4
  • 19
    • 59349100852 scopus 로고    scopus 로고
    • Electromyography signal analysis using wavelet transform higher order statistics to determine muscle contraction
    • M. S. Hussain, M. Reaz, F. Yasin M. Ibrahimy, Electromyography signal analysis using wavelet transform higher order statistics to determine muscle contraction, Expert Syst. 26 2009 35-48.
    • (2009) Expert Syst , vol.26 , pp. 35-48
    • Hussain, M.S.1    Reaz, M.2    Yasin, F.3    Ibrahimy, M.4
  • 21
    • 79955973745 scopus 로고    scopus 로고
    • Kurtosis and negentropy investigation of myo electric signals during different MVCs
    • Vitoria January
    • G. R. Naik, D. K. Kumar S. P. Arjunan, Kurtosis negentropy investigation of myo electric signals during different MVCs, Proc. ISSNIP Biosignals Biorobtics Conf., Vitoria January, 2011, pp. 1-4.
    • (2011) Proc. ISSNIP Biosignals and Biorobtics Conf , pp. 1-4
    • Naik, G.R.1    Kumar, D.K.2    Arjunan, S.P.3
  • 22
    • 84863794828 scopus 로고    scopus 로고
    • Dynamic hand motion recognition based on transient steady-state EMG signals
    • D. Yang, J. Zhao, L. Jiang H. Liu, Dynamic hand motion recognition based on transient steady-state EMG signals, Int. J. Humanoid Rob. 9 2012 1250007.
    • (2012) Int. J. Humanoid Rob , vol.9 , pp. 1250007
    • Yang, D.1    Zhao, J.2    Jiang, L.3    Liu, H.4
  • 23
    • 84863033966 scopus 로고    scopus 로고
    • Empirical copula-based templates to recognize surface EMG signals of hand motions
    • Z. Ju, X. Zhu H. Liu, Empirical copula-based templates to recognize surface EMG signals of hand motions, Int. J. Humanoid Rob. 8 2011 725-741.
    • (2011) Int. J. Humanoid Rob , vol.8 , pp. 725-741
    • Ju, Z.1    Zhu, X.2    Liu, H.3
  • 24
    • 36949012341 scopus 로고    scopus 로고
    • Study of the SEMG probability distribution of the paretic tibialis anterior muscle
    • A. S. Cherniz, C. E. Bonell C. B. Tabernig, Study of the SEMG probability distribution of the paretic tibialis anterior muscle, J. Phys., Conf. Ser. 90 2007 012054.
    • (2007) J. Phys. Conf. Ser , vol.90 , pp. 012054
    • Cherniz, A.S.1    Bonell, C.E.2    Tabernig, C.B.3
  • 25
    • 79955831275 scopus 로고    scopus 로고
    • Wavelet-based denoising algorithm for robust EMG pattern recognition
    • A. Phinyomark, P. Phukpattaranont C. Limsakul, Wavelet-based denoising algorithm for robust EMG pattern recognition, Fluct. Noise Lett. 10 2011 157-167.
    • (2011) Fluct. Noise Lett , vol.10 , pp. 157-167
    • Phinyomark, A.1    Phukpattaranont, P.2    Limsakul, C.3
  • 27
    • 84861199779 scopus 로고    scopus 로고
    • Toward improved control of prosthetic fingers using surface electromyogram EMG signals
    • R. N. Khushaba, M. Takruri, S. Kodagoda G. Dissanayake, Toward improved control of prosthetic fingers using surface electromyogram EMG signals, Expert Syst. Appl. 39 2012 10731-10738.
    • (2012) Expert Syst. Appl , vol.39 , pp. 10731-10738
    • Khushaba, R.N.1    Takruri, M.2    Kodagoda, S.3    Dissanayake, G.4
  • 28
    • 34548816717 scopus 로고    scopus 로고
    • Application to higher order statistics to surface electromyogram signal classification
    • K. Nazarpour, A. Sharafat S. Firoozabadi, Application to higher order statistics to surface electromyogram signal classification, IEEE Trans. Biomed. Eng. 54 2007 1762-1769.
    • (2007) IEEE Trans. Biomed. Eng , vol.54 , pp. 1762-1769
    • Nazarpour, K.1    Sharafat, A.2    Firoozabadi, S.3
  • 29
    • 0028736513 scopus 로고
    • The probability density function of vibromyographic electromyographic signals for different levels of contraction of human quadriceps muscles
    • Baltimore, MD November 351-352
    • D. F. Yuan, Y. T. Zhang W. Herzog, The probability density function of vibromyographic electromyographic signals for different levels of contraction of human quadriceps muscles, Proc. 16th Annual Int. Conf. IEEE Engineering in Medicine Biology Society, Baltimore, MD November, 1994, pp. 1, 351-352.
    • (1994) Proc. 16th Annual Int. Conf. IEEE Engineering in Medicine and Biology Society , pp. 1
    • Yuan, D.F.1    Zhang, Y.T.2    Herzog, W.3
  • 30
    • 0016077783 scopus 로고
    • A signal-to-noise investigation of nonlinear electromyographic processors
    • J. G. Kreifeldt S. Yao, A signal-to-noise investigation of nonlinear electromyographic processors, IEEE Trans. Biomed. Eng. BME-21 1974 298-308.
    • (1974) IEEE Trans. Biomed. Eng. BME-21 , pp. 298-308
    • Kreifeldt, J.G.1    Yao, S.2
  • 31
    • 0032100766 scopus 로고    scopus 로고
    • Influence of smoothing window length on electromyogram amplitude estimates
    • Y. St-Amant, D. Rancourt E. A. Clancy, Influence of smoothing window length on electromyogram amplitude estimates, IEEE Trans. Biomed. Eng. 45 1998 795-799.
    • (1998) IEEE Trans. Biomed. Eng , vol.45 , pp. 795-799
    • St-Amant, Y.1    Rancourt, D.2    Clancy, E.A.3
  • 32
    • 46249100904 scopus 로고    scopus 로고
    • GA-based feature subset selection for myoelectric classification
    • December
    • M. A. Oskoei H. Hu, GA-based feature subset selection for myoelectric classification, Proc. IEEE Int. Conf. Robotics Biomimetics December, 2006, pp. 1465-1470.
    • (2006) Proc. IEEE Int. Conf. Robotics and Biomimetics , pp. 1465-1470
    • Oskoei, M.A.1    Hu, H.2
  • 33
    • 84877002299 scopus 로고    scopus 로고
    • Classification of nine directions using the maximum likelihood estimation based on electromyogram of both forearms
    • S. Yu, E. Jeong, K. Hong S. Lee, Classification of nine directions using the maximum likelihood estimation based on electromyogram of both forearms, Biomed. Eng. Lett. 2 2012 129-137.
    • (2012) Biomed. Eng. Lett , vol.2 , pp. 129-137
    • Yu, S.1    Jeong, E.2    Hong, K.3    Lee, S.4
  • 34


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.