-
1
-
-
76649102408
-
Biogas production: current state and perspectives
-
Weiland P. Biogas production: current state and perspectives. Appl. Microbiol. Biotechnol. 2010, 85:849-860.
-
(2010)
Appl. Microbiol. Biotechnol.
, vol.85
, pp. 849-860
-
-
Weiland, P.1
-
2
-
-
60049091401
-
Biogas, membranes and carbon dioxide capture
-
Favre E., Bounaceur R., Roizard D. Biogas, membranes and carbon dioxide capture. J. Membr. Sci. 2009, 328:11-14.
-
(2009)
J. Membr. Sci.
, vol.328
, pp. 11-14
-
-
Favre, E.1
Bounaceur, R.2
Roizard, D.3
-
4
-
-
77954806813
-
Membrane biogas upgrading processes for the production of natural gas substitute
-
Makaruk A., Miltner M., Harasek M. Membrane biogas upgrading processes for the production of natural gas substitute. Sep. Purif. Technol. 2010, 74:83-92.
-
(2010)
Sep. Purif. Technol.
, vol.74
, pp. 83-92
-
-
Makaruk, A.1
Miltner, M.2
Harasek, M.3
-
5
-
-
37349081326
-
Biogas as a resource-efficient vehicle fuel
-
Börjesson P., Mattiasson B. Biogas as a resource-efficient vehicle fuel. Trend Biotechnol. 2008, 26:7-13.
-
(2008)
Trend Biotechnol.
, vol.26
, pp. 7-13
-
-
Börjesson, P.1
Mattiasson, B.2
-
7
-
-
84882421219
-
Upgrading landfill gas using a high pressure water absorption process
-
Rasi S., Läntelä J., Rintala J. Upgrading landfill gas using a high pressure water absorption process. Fuel 2014, 115:539-543.
-
(2014)
Fuel
, vol.115
, pp. 539-543
-
-
Rasi, S.1
Läntelä, J.2
Rintala, J.3
-
9
-
-
84883553000
-
Biogas upgrading - technology overview, comparison and perspectives for the future
-
Bauer F., Persson T., Hulteberg C., Tamm D. Biogas upgrading - technology overview, comparison and perspectives for the future. Biofuels Bioprod. Bior. 2013, 7:499-511.
-
(2013)
Biofuels Bioprod. Bior.
, vol.7
, pp. 499-511
-
-
Bauer, F.1
Persson, T.2
Hulteberg, C.3
Tamm, D.4
-
12
-
-
33947705792
-
2 from flue gas using hollow fiber membrane contactors without wetting
-
2 from flue gas using hollow fiber membrane contactors without wetting. Fuel Process. Technol. 2007, 88:501-511.
-
(2007)
Fuel Process. Technol.
, vol.88
, pp. 501-511
-
-
Yan, S.P.1
Fang, M.X.2
Zhang, W.F.3
Wang, S.Y.4
Xu, Z.K.5
Luo, Z.Y.6
Cen, K.F.7
-
13
-
-
10044247417
-
2 absorption using chemical solvents in hollow fiber membrane contactors
-
2 absorption using chemical solvents in hollow fiber membrane contactors. Sep. Purif. Technol. 2005, 41:109-122.
-
(2005)
Sep. Purif. Technol.
, vol.41
, pp. 109-122
-
-
Li, J.L.1
Chen, B.H.2
-
14
-
-
20444476172
-
Application of pilot-scale membrane contactor hybrid system for removal of carbon dioxide from flue gas
-
Yeon S.H., Lee K.S., Sea B., Park Y.I., Lee K.H. Application of pilot-scale membrane contactor hybrid system for removal of carbon dioxide from flue gas. J. Membrane Sci. 2005, 257:156-160.
-
(2005)
J. Membrane Sci.
, vol.257
, pp. 156-160
-
-
Yeon, S.H.1
Lee, K.S.2
Sea, B.3
Park, Y.I.4
Lee, K.H.5
-
20
-
-
84898723221
-
Carbon dioxide separation technology from biogas by membrane/absorption hybrid method
-
Tomioka T., Sakai T., Mano H. Carbon dioxide separation technology from biogas by membrane/absorption hybrid method. Energy Proc. 2013, 37:1209-1217.
-
(2013)
Energy Proc.
, vol.37
, pp. 1209-1217
-
-
Tomioka, T.1
Sakai, T.2
Mano, H.3
-
21
-
-
84878160040
-
Quantifying the loss of methane through secondary gas mass transport (or 'slip') from a micro-porous membrane contactor applied to biogas upgrading
-
McLeod A., Jefferson B., McAdam E.J. Quantifying the loss of methane through secondary gas mass transport (or 'slip') from a micro-porous membrane contactor applied to biogas upgrading. Water Res. 2013, 47:3688-3695.
-
(2013)
Water Res.
, vol.47
, pp. 3688-3695
-
-
McLeod, A.1
Jefferson, B.2
McAdam, E.J.3
-
22
-
-
84893325358
-
3 synthesis in a membrane reactor
-
3 synthesis in a membrane reactor. Ind. Eng. Chem. Res. 2014, 53:1702-1706.
-
(2014)
Ind. Eng. Chem. Res.
, vol.53
, pp. 1702-1706
-
-
Zhou, J.1
Cao, X.2
Yong, X.Y.3
Wang, S.Y.4
Liu, X.5
Chen, Y.L.6
Zheng, T.7
Ouyang, P.K.8
-
24
-
-
33749660765
-
Selection of new absorbents for carbon dioxide capture
-
Ma'mun S., Svendsen H.F., Hoff K.A., Juliussen O. Selection of new absorbents for carbon dioxide capture. Energy Convers. Manag. 2007, 48:251-258.
-
(2007)
Energy Convers. Manag.
, vol.48
, pp. 251-258
-
-
Ma'mun, S.1
Svendsen, H.F.2
Hoff, K.A.3
Juliussen, O.4
-
25
-
-
68949183113
-
2-rich alkanolamines solution by using reduced thickness and vacuum technology: Regeneration feasibility and characteristic of thin-layer solvent
-
2-rich alkanolamines solution by using reduced thickness and vacuum technology: Regeneration feasibility and characteristic of thin-layer solvent. Chem. Eng. Process.: Process Intensification 2009, 48:515-523.
-
(2009)
Chem. Eng. Process.: Process Intensification
, vol.48
, pp. 515-523
-
-
Yan, S.P.1
Fang, M.X.2
Luo, Z.Y.3
Cen, K.F.4
-
26
-
-
22944445169
-
Comparing the absorption performance of packed columns and membrane contactors
-
deMontigny D., Tontiwachwuthikul P., Chakma A. Comparing the absorption performance of packed columns and membrane contactors. Ind. Eng. Chem. Res. 2005, 44(15):5726-5732.
-
(2005)
Ind. Eng. Chem. Res.
, vol.44
, Issue.15
, pp. 5726-5732
-
-
deMontigny, D.1
Tontiwachwuthikul, P.2
Chakma, A.3
-
32
-
-
79958028542
-
2 from natural gas by hollow fiber membrane contactor using mixture of alkanolamines
-
2 from natural gas by hollow fiber membrane contactor using mixture of alkanolamines. J. Membrane Sci. 2011, 377:191-197.
-
(2011)
J. Membrane Sci.
, vol.377
, pp. 191-197
-
-
Hedayat, M.1
Soltnieh, M.2
Mousavi, S.A.3
-
34
-
-
0037361212
-
Approximate solution to predict the enhancement factor for the reactive absorption of a gas in a liquid flowing through a microporous membrane hollow fiber
-
Kumar P.S., Hogendoorn J.A., Feron P.H.M., Versteeg G.F. Approximate solution to predict the enhancement factor for the reactive absorption of a gas in a liquid flowing through a microporous membrane hollow fiber. J. Membrane Sci. 2003, 213:231-245.
-
(2003)
J. Membrane Sci.
, vol.213
, pp. 231-245
-
-
Kumar, P.S.1
Hogendoorn, J.A.2
Feron, P.H.M.3
Versteeg, G.F.4
-
35
-
-
0001765217
-
Measurement of diffusion coefficients important in modeling the absorption rate of carbon dioxide into aqueous N-methyldiethanolamine
-
Rowley R.L., Adams M.E., Marshall T.L., Oscarson J.L., Wilding V.V., Anderson D.J. Measurement of diffusion coefficients important in modeling the absorption rate of carbon dioxide into aqueous N-methyldiethanolamine. J. Chem. Eng. Data 1997, 42:310-317.
-
(1997)
J. Chem. Eng. Data
, vol.42
, pp. 310-317
-
-
Rowley, R.L.1
Adams, M.E.2
Marshall, T.L.3
Oscarson, J.L.4
Wilding, V.V.5
Anderson, D.J.6
-
36
-
-
84875614060
-
Kinetic study of carbon dioxide absorption with aqueous potassium carbonate promoted by arginine
-
Shen S.F., Feng X.X., Zhao R.H., Ghosh U.K., Chen A.B. Kinetic study of carbon dioxide absorption with aqueous potassium carbonate promoted by arginine. Chem. Eng. J. 2013, 22:478-487.
-
(2013)
Chem. Eng. J.
, vol.22
, pp. 478-487
-
-
Shen, S.F.1
Feng, X.X.2
Zhao, R.H.3
Ghosh, U.K.4
Chen, A.B.5
-
37
-
-
0037160331
-
Kinetics of absorption of carbon dioxide into aqueous solutions of monoethanolamine+triethanolamine
-
Hong S.Y., Li M.H. Kinetics of absorption of carbon dioxide into aqueous solutions of monoethanolamine+triethanolamine. Ind. Eng. Chem. Res. 2002, 41:257-266.
-
(2002)
Ind. Eng. Chem. Res.
, vol.41
, pp. 257-266
-
-
Hong, S.Y.1
Li, M.H.2
-
38
-
-
84868525178
-
2 absorption by aqueous amines using in situ FTIR
-
2 absorption by aqueous amines using in situ FTIR. Ind. Eng. Chem. Res. 2012, 51:14317-14324.
-
(2012)
Ind. Eng. Chem. Res.
, vol.51
, pp. 14317-14324
-
-
Richner, G.1
Puxty, G.2
-
39
-
-
84900992991
-
2 in monoethanolamine (MEA) aqueous solutions: fingerprints of carbamate formation assessed with first-principles simulations
-
2 in monoethanolamine (MEA) aqueous solutions: fingerprints of carbamate formation assessed with first-principles simulations. J. Phys. Chem. Lett. 2014, 5:1562-1677.
-
(2014)
J. Phys. Chem. Lett.
, vol.5
, pp. 1562-1677
-
-
Ma, C.R.1
Pietrucci, F.2
Andreoni, W.3
-
40
-
-
80053563912
-
The molecular structure of liquid water delivered by absorption spectroscopy in the whole IR region completed with thermodynamics data
-
Maréchal Y. The molecular structure of liquid water delivered by absorption spectroscopy in the whole IR region completed with thermodynamics data. J. Mol. Struct. 2011, 1004:146-155.
-
(2011)
J. Mol. Struct.
, vol.1004
, pp. 146-155
-
-
Maréchal, Y.1
-
41
-
-
0025613794
-
2O) solutions. I. Spectral parameters of amino acid residue absorption bands
-
2O) solutions. I. Spectral parameters of amino acid residue absorption bands. Biopolymers 1990, 30:1243-1257.
-
(1990)
Biopolymers
, vol.30
, pp. 1243-1257
-
-
Venyaminov, S.Y.1
Kalnin, N.N.2
-
42
-
-
0034473318
-
The infrared absorption of amino acid side chains
-
Barth A. The infrared absorption of amino acid side chains. Prog. Biophys. Mol. Biol. 2000, 74:141-173.
-
(2000)
Prog. Biophys. Mol. Biol.
, vol.74
, pp. 141-173
-
-
Barth, A.1
-
43
-
-
49649133747
-
The infrared spectra of amino acids and dipeptides
-
Pearson J.F., Slifkin M.A. The infrared spectra of amino acids and dipeptides. Spectrochim. Acta 1972, 28A:2403-2417.
-
(1972)
Spectrochim. Acta
, vol.28 A
, pp. 2403-2417
-
-
Pearson, J.F.1
Slifkin, M.A.2
-
47
-
-
0034788253
-
Parametric studies of carbon dioxide absorption into highly concentrated monoethanolamine solutions
-
deMontigny D., Tontiwachwuthikul P., Chakma A. Parametric studies of carbon dioxide absorption into highly concentrated monoethanolamine solutions. Can. J. Chem. Eng. 2001, 79:137-142.
-
(2001)
Can. J. Chem. Eng.
, vol.79
, pp. 137-142
-
-
deMontigny, D.1
Tontiwachwuthikul, P.2
Chakma, A.3
|