-
1
-
-
33644527903
-
Microscale technologies for tissue engineering and biology
-
Khademhosseini, A., Langer, R., Borenstein, J. & Vacanti, J. P. Microscale technologies for tissue engineering and biology. Proc. Natl. Acad. Sci. U.S.A.103, 2480-2487 (2006).
-
(2006)
Proc. Natl. Acad. Sci. U.S.A.
, vol.103
, pp. 2480-2487
-
-
Khademhosseini, A.1
Langer, R.2
Borenstein, J.3
Vacanti, J.P.4
-
2
-
-
38049078607
-
Toughening of artificial silk by incorporation of carbon nanotubes
-
Blond, D., McCarthy, D. N., Blau, W. J. & Coleman, J. N. Toughening of artificial silk by incorporation of carbon nanotubes. Biomacromolecules. 8, 3973-3976 (2007).
-
(2007)
Biomacromolecules.
, vol.8
, pp. 3973-3976
-
-
Blond, D.1
McCarthy, D.N.2
Blau, W.J.3
Coleman, J.N.4
-
3
-
-
84865211338
-
Templating quantum dot to phase-transformed electrospun TiO(2) nanofibers for enhanced photo-excited electron injection
-
Aykut, Y., Saquing, C. D., Pourdeyhimi, B., Parsons, G. N. & Khan, S. A. Templating quantum dot to phase-transformed electrospun TiO(2) nanofibers for enhanced photo-excited electron injection. ACS Appl. Mater. Interfaces. 4, 3837-3845 (2012).
-
(2012)
ACS Appl. Mater. Interfaces.
, vol.4
, pp. 3837-3845
-
-
Aykut, Y.1
Saquing, C.D.2
Pourdeyhimi, B.3
Parsons, G.N.4
Khan, S.A.5
-
4
-
-
77953168826
-
A Microfluidic Approach for the Formation of Conductive Nanowires and Hollow Hybrid Structures
-
Puigmarti-Luis, J., Schaffhauser, D., Burg, B. R. & Dittrich, P. S. A Microfluidic Approach for the Formation of Conductive Nanowires and Hollow Hybrid Structures. Adv. Mater. 22, 2255 (2010).
-
(2010)
Adv. Mater.
, vol.22
, pp. 2255
-
-
Puigmarti-Luis, J.1
Schaffhauser, D.2
Burg, B.R.3
Dittrich, P.S.4
-
5
-
-
0022593499
-
Melt-spun noncircular carbon-fibers
-
Edie, D. D., Fox, N. K., Barnett, B. C. & Fain, C. C. Melt-spun noncircular carbon-fibers. Carbon. 24, 477-482 (1986).
-
(1986)
Carbon.
, vol.24
, pp. 477-482
-
-
Edie, D.D.1
Fox, N.K.2
Barnett, B.C.3
Fain, C.C.4
-
6
-
-
0038661293
-
Effect of fiber shapes on physical characteristics of non-circular carbon fibers-reinforced composites
-
Park, S. J., Seo, M. K. & Shim, H. B. Effect of fiber shapes on physical characteristics of non-circular carbon fibers-reinforced composites. Mater. Sci. Eng. A Struct. 352, 34-39 (2003).
-
(2003)
Mater. Sci. Eng. A Struct.
, vol.352
, pp. 34-39
-
-
Park, S.J.1
Seo, M.K.2
Shim, H.B.3
-
7
-
-
0029168426
-
Deep grooved polyester fiber for wet lay applications
-
Haile, W. A. & Phillips, B. M. Deep grooved polyester fiber for wet lay applications. Tappi. 78, 139-142 (1995).
-
(1995)
Tappi.
, vol.78
, pp. 139-142
-
-
Haile, W.A.1
Phillips, B.M.2
-
8
-
-
0037040731
-
Radiative properties of fibers with non-circular cross sectional shapes
-
Yamada, J. Radiative properties of fibers with non-circular cross sectional shapes. J. Quant. Spectrosc. Ra. 73, 261-272 (2002).
-
(2002)
J. Quant. Spectrosc. Ra.
, vol.73
, pp. 261-272
-
-
Yamada, J.1
-
9
-
-
3042795664
-
Chiral fiber gratings
-
Kopp, V. I. et al. Chiral fiber gratings. Science. 305, 74-75 (2004).
-
(2004)
Science.
, vol.305
, pp. 74-75
-
-
Kopp, V.I.1
-
10
-
-
70449125758
-
A simple sheath-flow microfluidic device for micro/nanomanufacturing: Fabrication of hydrodynamically shaped polymer fibers
-
Thangawng, A. L., Howell, P. B., Richards, J. J., Erickson, J. S. & Ligler, F. S. A simple sheath-flow microfluidic device for micro/nanomanufacturing: fabrication of hydrodynamically shaped polymer fibers. Lab Chip. 9, 3126-3130 (2009).
-
(2009)
Lab Chip.
, vol.9
, pp. 3126-3130
-
-
Thangawng, A.L.1
Howell, P.B.2
Richards, J.J.3
Erickson, J.S.4
Ligler, F.S.5
-
11
-
-
79952126092
-
UV polymerization of hydrodynamically shaped fibers
-
Thangawng, A. L., Howell, P. B., Spillmann, C. M., Naciri, J. & Ligler, F. S. UV polymerization of hydrodynamically shaped fibers. Lab Chip. 11, 1157-1160 (2011).
-
(2011)
Lab Chip.
, vol.11
, pp. 1157-1160
-
-
Thangawng, A.L.1
Howell, P.B.2
Spillmann, C.M.3
Naciri, J.4
Ligler, F.S.5
-
12
-
-
78049351588
-
A hard microflow cytometer using groove-generated sheath flow for multiplexed bead and cell assays
-
Thangawng, A. L. et al. A hard microflow cytometer using groove-generated sheath flow for multiplexed bead and cell assays. Anal. Bioanal. Chem. 398, 1871-1881 (2010).
-
(2010)
Anal. Bioanal. Chem.
, vol.398
, pp. 1871-1881
-
-
Thangawng, A.L.1
-
13
-
-
60049085866
-
The Numerical Toolbox: An approach for modeling and optimizing microfluidic components
-
Mott, D. R., Howell Jr, P. B., Obenschain, K. S. & Oran, E. S. The Numerical Toolbox: An approach for modeling and optimizing microfluidic components. Mech. Res. Commun. 36, 104-109 (2009).
-
(2009)
Mech. Res. Commun.
, vol.36
, pp. 104-109
-
-
Mott, D.R.1
Howell Jr., P.B.2
Obenschain, K.S.3
Oran, E.S.4
-
14
-
-
33645396932
-
Toolbox for the design of optimized microfluidic components
-
Mott, D. R. et al. Toolbox for the design of optimized microfluidic components. Lab Chip. 6, 540-549 (2006).
-
(2006)
Lab Chip.
, vol.6
, pp. 540-549
-
-
Mott, D.R.1
-
16
-
-
84940228112
-
-
United States patent US2011193259-A1
-
Howell, P. B., Ligler, F. S. & Shields, A. R. Creating sheathed flow for applications e.g. particle counting, by introducing sheath and core streams at proximal end of channel that creates multiple sheathed flows, and polymerizing multiple sheathed flows to form multiple fibers. United States patent US2011193259-A1 (2009).
-
(2009)
Creating sheathed flow for applications e.g. particle counting, by introducing sheath and core streams at proximal end of channel that creates multiple sheathed flows, and polymerizing multiple sheathed flows to form multiple fibers
-
-
Howell, P.B.1
Ligler, F.S.2
Shields, A.R.3
-
17
-
-
84856233661
-
-
United States patent US20090208372
-
Mott, D., Howell Jr., P. B., Ligler, F. S., Fertig, S. & Bobrowski, A. Sheath flow device and method. United States patent US20090208372 (2009).
-
(2009)
Sheath flow device and method
-
-
Mott, D.1
Howell Jr., P.B.2
Ligler, F.S.3
Fertig, S.4
Bobrowski, A.5
-
18
-
-
84873689970
-
Rapid and continuous hydrodynamically controlled fabrication of biohybrid microfibers
-
Daniele, M. A. et al. Rapid and continuous hydrodynamically controlled fabrication of biohybrid microfibers. Adv. Funct. Mater. 23, 698-704 (2012).
-
(2012)
Adv. Funct. Mater.
, vol.23
, pp. 698-704
-
-
Daniele, M.A.1
-
20
-
-
84869594140
-
Hydrodynamically directed multiscale assembly of shaped polymer fibers
-
Shields, A. R. et al. Hydrodynamically directed multiscale assembly of shaped polymer fibers. Soft Matter. 8, 6656-6660 (2012).
-
(2012)
Soft Matter.
, vol.8
, pp. 6656-6660
-
-
Shields, A.R.1
-
21
-
-
84872153618
-
Hydrodynamic shaping, polymerization, and subsequent modification of thiol click fibers
-
Boyd, D. A., Shields, A. R., Naciri, J. & Ligler, F. S. Hydrodynamic shaping, polymerization, and subsequent modification of thiol click fibers. ACS Appl. Mater. Inter. 5, 114-119 (2012).
-
(2012)
ACS Appl. Mater. Inter.
, vol.5
, pp. 114-119
-
-
Boyd, D.A.1
Shields, A.R.2
Naciri, J.3
Ligler, F.S.4
-
22
-
-
84873689970
-
Rapid and Continuous Hydrodynamically Controlled Fabrication of Biohybrid Microfibers
-
Daniele, M. A. et al. Rapid and Continuous Hydrodynamically Controlled Fabrication of Biohybrid Microfibers. Adv. Funct. Mater. 23, 698-704 (2013).
-
(2013)
Adv. Funct. Mater.
, vol.23
, pp. 698-704
-
-
Daniele, M.A.1
-
23
-
-
84879935518
-
Design and fabrication of uniquely shaped thiol-ene microfibers using a two-stage hydrodynamic focusing design
-
doi:10.1039/c3lc50413a
-
Boyd, D. A., Shields, A. R., Howell, P. B. & Ligler, F. S. Design and fabrication of uniquely shaped thiol-ene microfibers using a two-stage hydrodynamic focusing design. Lab Chip. 13, 3105-3110, doi:10.1039/c3lc50413a (2013).
-
(2013)
Lab Chip.
, vol.13
, pp. 3105-3110
-
-
Boyd, D.A.1
Shields, A.R.2
Howell, P.B.3
Ligler, F.S.4
|