-
1
-
-
84869862190
-
A review of the applications of nanofluids in solar energy
-
Mahian O., Kianifar A., Kalogirou S.A., Pop I., Wongwises S. A review of the applications of nanofluids in solar energy. Int. J. Heat Mass Transf. 2013, 57:582-594.
-
(2013)
Int. J. Heat Mass Transf.
, vol.57
, pp. 582-594
-
-
Mahian, O.1
Kianifar, A.2
Kalogirou, S.A.3
Pop, I.4
Wongwises, S.5
-
2
-
-
84872065279
-
Small particles, big impacts: a review of the diverse applications of nanofluids
-
Taylor R., Coulombe S., Otanicar T., Phelan P., Gunawan A., Lv W., Rosengarten G., Prasher R., Tyagi H. Small particles, big impacts: a review of the diverse applications of nanofluids. J. Appl. Phys. 2013, 113:011301.
-
(2013)
J. Appl. Phys.
, vol.113
, pp. 011301
-
-
Taylor, R.1
Coulombe, S.2
Otanicar, T.3
Phelan, P.4
Gunawan, A.5
Lv, W.6
Rosengarten, G.7
Prasher, R.8
Tyagi, H.9
-
4
-
-
84874376225
-
Stability of glycol nanofluids - the theory and experiment
-
Witharana S., Palabiyik I., Musina Z., Ding Y. Stability of glycol nanofluids - the theory and experiment. Powder Technol. 2013, 239:72-77.
-
(2013)
Powder Technol.
, vol.239
, pp. 72-77
-
-
Witharana, S.1
Palabiyik, I.2
Musina, Z.3
Ding, Y.4
-
5
-
-
79958016364
-
A review of nanofluid stability properties and characterization in stationary conditions
-
Ghadimi A., Saidur R., Metselaar H.S.C. A review of nanofluid stability properties and characterization in stationary conditions. Int. J. Heat Mass Transf. 2011, 54:4051-4068.
-
(2011)
Int. J. Heat Mass Transf.
, vol.54
, pp. 4051-4068
-
-
Ghadimi, A.1
Saidur, R.2
Metselaar, H.S.C.3
-
6
-
-
82655168667
-
Stability of nanofluids in quiescent and shear flow fields
-
Witharana S., Chen H., Ding Y. Stability of nanofluids in quiescent and shear flow fields. Nanoscale Res. Lett. 2011, 6:231-236.
-
(2011)
Nanoscale Res. Lett.
, vol.6
, pp. 231-236
-
-
Witharana, S.1
Chen, H.2
Ding, Y.3
-
7
-
-
62149102645
-
Predicting thermal conductivity of liquid suspensions of nanoparticles (nanofluids) based on rheology
-
Chen H., Witharana S., Jin Y., Kim C., Ding Y. Predicting thermal conductivity of liquid suspensions of nanoparticles (nanofluids) based on rheology. Particuology 2009, 7:151-157.
-
(2009)
Particuology
, vol.7
, pp. 151-157
-
-
Chen, H.1
Witharana, S.2
Jin, Y.3
Kim, C.4
Ding, Y.5
-
8
-
-
84862317339
-
Results of experimental investigations on the heat conductivity of nanofluids based on diathermic oil for high temperature applications
-
Colangelo G., Favale E., de Risi A., Laforgia D. Results of experimental investigations on the heat conductivity of nanofluids based on diathermic oil for high temperature applications. Appl. Energy 2012, 97:828-883.
-
(2012)
Appl. Energy
, vol.97
, pp. 828-883
-
-
Colangelo, G.1
Favale, E.2
de Risi, A.3
Laforgia, D.4
-
9
-
-
80052268944
-
3 nanofluids prepared through ultrasonic vibration
-
3 nanofluids prepared through ultrasonic vibration. Appl. Energy 2011, 88:4527-4533.
-
(2011)
Appl. Energy
, vol.88
, pp. 4527-4533
-
-
Lin, C.Y.1
Wang, J.C.2
Chen, T.C.3
-
11
-
-
84865023901
-
Measurement of the thermal conductivity of titania and alumina nanofluids
-
Yiamsawasd T., Dalkilic A.S., Wongwises S. Measurement of the thermal conductivity of titania and alumina nanofluids. Thermochim. Acta 2012, 545:48-56.
-
(2012)
Thermochim. Acta
, vol.545
, pp. 48-56
-
-
Yiamsawasd, T.1
Dalkilic, A.S.2
Wongwises, S.3
-
12
-
-
84885637748
-
3 nanofluids thermal properties and rheology - effects of transient and steady-state heat exposure
-
3 nanofluids thermal properties and rheology - effects of transient and steady-state heat exposure. Int. J. Therm. Sci. 2014, 76:155-167.
-
(2014)
Int. J. Therm. Sci.
, vol.76
, pp. 155-167
-
-
Hachey, M.A.1
Nguyen, C.T.2
Galanis, N.3
Popa, C.V.4
-
13
-
-
78149408746
-
Techniques for measuring the thermal conductivity of nanofluids: a review
-
Paul G., Chopkar M., Manna I., Das P.K. Techniques for measuring the thermal conductivity of nanofluids: a review. Renew. Sust. Energ. Rev. 2010, 14:1913-1924.
-
(2010)
Renew. Sust. Energ. Rev.
, vol.14
, pp. 1913-1924
-
-
Paul, G.1
Chopkar, M.2
Manna, I.3
Das, P.K.4
-
14
-
-
84862332724
-
Experimental investigations of the viscosity of nanofluids at low temperatures
-
Aladag B., Halelfadl S., Doner N., Maré T., Duret S., Estellé P. Experimental investigations of the viscosity of nanofluids at low temperatures. Appl. Energy 2012, 97:876-880.
-
(2012)
Appl. Energy
, vol.97
, pp. 876-880
-
-
Aladag, B.1
Halelfadl, S.2
Doner, N.3
Maré, T.4
Duret, S.5
Estellé, P.6
-
16
-
-
84879411490
-
Viscosity of carbon nanotubes water-based nanofluids: influence of concentration and temperature
-
Halelfadl S., Estellé P., Aladag B., Doner N., Maré T. Viscosity of carbon nanotubes water-based nanofluids: influence of concentration and temperature. Int. J. Therm. Sci. 2013, 71:111-117.
-
(2013)
Int. J. Therm. Sci.
, vol.71
, pp. 111-117
-
-
Halelfadl, S.1
Estellé, P.2
Aladag, B.3
Doner, N.4
Maré, T.5
-
17
-
-
80053292201
-
Comparison of the thermal performances of two nanofluids at low temperature in a plate heat exchanger
-
Maré T., Halelfadl S., Sow O., Estellé P., Duret S., Bazantay F. Comparison of the thermal performances of two nanofluids at low temperature in a plate heat exchanger. Exp. Thermal Fluid Sci. 2011, 35:1535-1543.
-
(2011)
Exp. Thermal Fluid Sci.
, vol.35
, pp. 1535-1543
-
-
Maré, T.1
Halelfadl, S.2
Sow, O.3
Estellé, P.4
Duret, S.5
Bazantay, F.6
-
18
-
-
84878658780
-
Shear history effect on the viscosity of carbon nanotubes water-based nanofluid
-
Estellé P., Halelfadl S., Doner N., Maré T. Shear history effect on the viscosity of carbon nanotubes water-based nanofluid. Curr. Nanosci. 2013, 9:225-230.
-
(2013)
Curr. Nanosci.
, vol.9
, pp. 225-230
-
-
Estellé, P.1
Halelfadl, S.2
Doner, N.3
Maré, T.4
-
20
-
-
84891662611
-
Dispersing of ZnO nanoparticles in a mixture of ethylene glycol-water, exploration of temperature-dependent density, and sensitivity analysis
-
Mahian O., Kianifar A., Wongwises S. Dispersing of ZnO nanoparticles in a mixture of ethylene glycol-water, exploration of temperature-dependent density, and sensitivity analysis. Cluster Sci. 2013, 24:1103-1114.
-
(2013)
Cluster Sci.
, vol.24
, pp. 1103-1114
-
-
Mahian, O.1
Kianifar, A.2
Wongwises, S.3
-
23
-
-
20444450512
-
Study of the enhanced thermal conductivity of Fe nanofluids
-
Hong T.K., Yang H.S., Choi C.J. Study of the enhanced thermal conductivity of Fe nanofluids. J. Appl. Phys. 2005, 97:64311-64314.
-
(2005)
J. Appl. Phys.
, vol.97
, pp. 64311-64314
-
-
Hong, T.K.1
Yang, H.S.2
Choi, C.J.3
-
24
-
-
27544441565
-
Experimental investigations on transport properties of magnetic fluids
-
Li Q., Xuan Y., Wang J. Experimental investigations on transport properties of magnetic fluids. Exp. Thermal Fluid Sci. 2005, 30:109-116.
-
(2005)
Exp. Thermal Fluid Sci.
, vol.30
, pp. 109-116
-
-
Li, Q.1
Xuan, Y.2
Wang, J.3
-
25
-
-
27444434138
-
Nanoparticle-dispersion-dependent thermal conductivity in nanofluids
-
Hong T.K., Yang H.S. Nanoparticle-dispersion-dependent thermal conductivity in nanofluids. J. Korean Phys. Soc. 2005, 47:321-324.
-
(2005)
J. Korean Phys. Soc.
, vol.47
, pp. 321-324
-
-
Hong, T.K.1
Yang, H.S.2
-
26
-
-
31144453694
-
Thermal conductivity of Fe nanofluids depending on the cluster size of nanoparticles
-
Hong K.S., Hong T.K., Yang H.S. Thermal conductivity of Fe nanofluids depending on the cluster size of nanoparticles. Appl. Phys. Lett. 2006, 88:031901.
-
(2006)
Appl. Phys. Lett.
, vol.88
, pp. 031901
-
-
Hong, K.S.1
Hong, T.K.2
Yang, H.S.3
-
27
-
-
33847322946
-
Study of thermal conductivity of nanofluids for the application of heat transfer fluids
-
Yoo D.H., Hong K.S., Yang H.S. Study of thermal conductivity of nanofluids for the application of heat transfer fluids. Thermochim. Acta 2007, 455:66-69.
-
(2007)
Thermochim. Acta
, vol.455
, pp. 66-69
-
-
Yoo, D.H.1
Hong, K.S.2
Yang, H.S.3
-
28
-
-
70349634000
-
A comparative study of thermal behavior of iron and copper nanofluids
-
Sinha K., Kavlicoglu B., Liu Y., Gordaninejad F., Graeve O.A. A comparative study of thermal behavior of iron and copper nanofluids. J. Appl. Phys. 2009, 106:064307.
-
(2009)
J. Appl. Phys.
, vol.106
, pp. 064307
-
-
Sinha, K.1
Kavlicoglu, B.2
Liu, Y.3
Gordaninejad, F.4
Graeve, O.A.5
-
29
-
-
84892527623
-
Efficiency of carbon nanotubes water based nanofluids as coolants
-
Halelfadl S., Maré T., Estellé P. Efficiency of carbon nanotubes water based nanofluids as coolants. Exp. Thermal Fluid Sci. 2014, 3:104-110.
-
(2014)
Exp. Thermal Fluid Sci.
, vol.3
, pp. 104-110
-
-
Halelfadl, S.1
Maré, T.2
Estellé, P.3
-
30
-
-
0242582398
-
Thermal conductivity of heterogeneous two component systems
-
Hamilton R.L., Crosser O.K. Thermal conductivity of heterogeneous two component systems. IEC Fundam. 1962, 1:82-191.
-
(1962)
IEC Fundam.
, vol.1
, pp. 82-191
-
-
Hamilton, R.L.1
Crosser, O.K.2
-
31
-
-
8844257274
-
The role of interfacial layers in the enhanced thermal conductivity of nanofluids: a renovated Hamilton-Crosser model
-
Yu W., Choi S.U.S. The role of interfacial layers in the enhanced thermal conductivity of nanofluids: a renovated Hamilton-Crosser model. J. Nanopart. Res. 2004, 6:355-361.
-
(2004)
J. Nanopart. Res.
, vol.6
, pp. 355-361
-
-
Yu, W.1
Choi, S.U.S.2
-
32
-
-
84979113075
-
Eine neue bestimmung der molekuldimensionen
-
Einstein A. Eine neue bestimmung der molekuldimensionen. Ann. Phys. Leipzig 1906, 19:289-306.
-
(1906)
Ann. Phys. Leipzig
, vol.19
, pp. 289-306
-
-
Einstein, A.1
-
34
-
-
67650723427
-
Particle shape effect on thermophysical properties of alumina nanofluids
-
Timofeeva E.V., Routbort J.L., Singh D. Particle shape effect on thermophysical properties of alumina nanofluids. J. Appl. Phys. 2009, 106:014304.
-
(2009)
J. Appl. Phys.
, vol.106
, pp. 014304
-
-
Timofeeva, E.V.1
Routbort, J.L.2
Singh, D.3
|