메뉴 건너뛰기




Volumn 28, Issue 9, 2014, Pages 1781-1801

An analysis on movement patterns between zones using smart card data in subway networks

Author keywords

boarding behaviour; movement clustering; movement pattern analysis; smart card data; subway networks; zone analysis

Indexed keywords

ACCURACY ASSESSMENT; GIS; INTEGRATED APPROACH; MOBILITY; MOVEMENT; PATTERN RECOGNITION; RAILWAY TRANSPORT; URBAN POPULATION; URBAN TRANSPORT;

EID: 84907591267     PISSN: 13658816     EISSN: 13623087     Source Type: Journal    
DOI: 10.1080/13658816.2014.898768     Document Type: Article
Times cited : (34)

References (32)
  • 1
    • 53549133809 scopus 로고    scopus 로고
    • The concept of functional urban area
    • Antikainen, J., 2005. The concept of functional urban area. Findings of the Espon Projects, 1 (1), 447–456.
    • (2005) Findings of the Espon Projects , vol.1 , Issue.1 , pp. 447-456
    • Antikainen, J.1
  • 2
    • 2442582377 scopus 로고    scopus 로고
    • What role for smart-card data from bus systems?
    • Bagchi, M. and White, P.R., 2004. What role for smart-card data from bus systems? Proceedings of the ICE – Municipal Engineers, 157 (1), 39–46. doi:10.1680/muen.2004.157.1.39
    • (2004) Proceedings of the ICE – Municipal Engineers , vol.157 , Issue.1 , pp. 39-46
    • Bagchi, M.1    White, P.R.2
  • 3
    • 28844456390 scopus 로고    scopus 로고
    • The potential of public transport smart card data
    • Bagchi, M. and White, P.R., 2005. The potential of public transport smart card data. Transport Policy, 12 (5), 464–474. doi:10.1016/j.tranpol.2005.06.008
    • (2005) Transport Policy , vol.12 , Issue.5 , pp. 464-474
    • Bagchi, M.1    White, P.R.2
  • 4
    • 0035243142 scopus 로고    scopus 로고
    • Modeling the commute activity-travel pattern of workers: formulation and empirical analysis
    • Bhat, C., 2001. Modeling the commute activity-travel pattern of workers: formulation and empirical analysis. Transportation Science, 35 (1), 61–79. doi:10.1287/trsc.35.1.61.10142
    • (2001) Transportation Science , vol.35 , Issue.1 , pp. 61-79
    • Bhat, C.1
  • 8
    • 79960295045 scopus 로고    scopus 로고
    • Hierarchical clustering through spatial interaction data. The case of commuting flows in south-eastern France
    • Fusco, G. and Caglioni, M., 2011. Hierarchical clustering through spatial interaction data. The case of commuting flows in south-eastern France. Computational Science and Its Applications – ICCSA 2011, 6782, 135–151. doi:10.1007/978-3-642-21928-3_10
    • (2011) Computational Science and Its Applications – ICCSA 2011 , vol.6782 , pp. 135-151
    • Fusco, G.1    Caglioni, M.2
  • 9
    • 84891668457 scopus 로고    scopus 로고
    • Anonymizing trajectory data for passenger flow analysis
    • Ghasemzadeh, M., et al., 2014. Anonymizing trajectory data for passenger flow analysis. Transportation Research Part C: Emerging Technologies, 39, 63–79. doi:10.1016/j.trc.2013.12.003
    • (2014) Transportation Research Part C: Emerging Technologies , vol.39 , pp. 63-79
    • Ghasemzadeh, M.1
  • 10
    • 84860505138 scopus 로고    scopus 로고
    • Mining patterns of author orders in scientific publications
    • He, B., Ding, Y., and Yan, E., 2012. Mining patterns of author orders in scientific publications. Journal of Informetrics, 6 (3), 359–367. doi:10.1016/j.joi.2012.01.001
    • (2012) Journal of Informetrics , vol.6 , Issue.3 , pp. 359-367
    • He, B.1    Ding, Y.2    Yan, E.3
  • 11
    • 84907591334 scopus 로고    scopus 로고
    • Automated identification of linked trips at trip level using electronic fare collection data
    • Singapore. Washington, DC: Transportation Research Board:
    • Hoffman, M., Wilson, S.P., and White, P., 2009. Automated identification of linked trips at trip level using electronic fare collection data. In: The Transportation Research Board 88th annual meeting, 09-2417, Singapore. Washington, DC: Transportation Research Board, 840–845.
    • (2009) In: The Transportation Research Board 88th annual meeting , pp. 840-845
    • Hoffman, M.1    Wilson, S.P.2    White, P.3
  • 13
    • 0034903694 scopus 로고    scopus 로고
    • Multidimensional sequence alignment methods for activity-travel pattern analysis: a comparison of dynamic programming and genetic algorithms
    • Joh, C.-H., Arentze, T.A., and Timmermans, H.J.P., 2001. Multidimensional sequence alignment methods for activity-travel pattern analysis: a comparison of dynamic programming and genetic algorithms. Geographical Analysis, 33, 247–270. doi:10.1111/j.1538-4632.2001.tb00447.x
    • (2001) Geographical Analysis , vol.33 , pp. 247-270
    • Joh, C.-H.1    Arentze, T.A.2    Timmermans, H.J.P.3
  • 17
    • 84959284108 scopus 로고    scopus 로고
    • Travel pattern analysis using smart card data of regular users
    • Washington, DC: Transportation Research Board:
    • Lee, S. and Mark, D.H., 2011. Travel pattern analysis using smart card data of regular users. In: Transportation Research Board 90-th annual meeting. Washington, DC: Transportation Research Board, 11–4258.
    • (2011) In: Transportation Research Board 90-th annual meeting , pp. 11-4258
    • Lee, S.1    Mark, D.H.2
  • 18
    • 84865095003 scopus 로고    scopus 로고
    • Understanding individual and collective mobility patterns from smart card records: a case study in Shenzhen
    • St. Louis, MO: IEEE:
    • Liu, L., et al., 2009. Understanding individual and collective mobility patterns from smart card records: a case study in Shenzhen. In: The 12-th international IEEE conference on intelligent transportation systems. St. Louis, MO: IEEE, 1–6.
    • (2009) In: The 12-th international IEEE conference on intelligent transportation systems , pp. 1-6
    • Liu, L.1
  • 19
    • 84884728365 scopus 로고    scopus 로고
    • Mining smart card data for transit riders’ travel patterns
    • Ma, X., et al., 2013. Mining smart card data for transit riders’ travel patterns. Transportation Research Part C: Emerging Technologies, 36, 1–12. doi:10.1016/j.trc.2013.07.010
    • (2013) Transportation Research Part C: Emerging Technologies , vol.36 , pp. 1-12
    • Ma, X.1
  • 20
    • 0037370608 scopus 로고    scopus 로고
    • Extending the automated zoning procedure to reconcile incompatible zoning systems
    • Martin, D., 2003. Extending the automated zoning procedure to reconcile incompatible zoning systems. International Journal of Geographical Information Science, 17 (2), 181–196. doi:10.1080/713811750
    • (2003) International Journal of Geographical Information Science , vol.17 , Issue.2 , pp. 181-196
    • Martin, D.1
  • 23
    • 84907591772 scopus 로고    scopus 로고
    • Public transport OD matrix estimation from smart card-data
    • Munizaga, M., Palma, C., and Mora, P. 2010. Public transport OD matrix estimation from smart card-data. Transportation Policy, 14 (3), 193–203.
    • (2010) Transportation Policy , vol.14 , Issue.3 , pp. 193-203
    • Munizaga, M.1    Palma, C.2    Mora, P.3
  • 24
    • 84858311146 scopus 로고    scopus 로고
    • Estimation of a disaggregate multimodal public transport origin–destination matrix from passive smartcard data from Santiago, Chile
    • Munizaga, M.A. and Palma, C., 2012. Estimation of a disaggregate multimodal public transport origin–destination matrix from passive smartcard data from Santiago, Chile. Transportation Research Part C: Emerging Technologies, 24, 9–18. doi:10.1016/j.trc.2012.01.007
    • (2012) Transportation Research Part C: Emerging Technologies , vol.24 , pp. 9-18
    • Munizaga, M.A.1    Palma, C.2
  • 27
    • 0036568533 scopus 로고    scopus 로고
    • Travel behavior at the household level: understanding linkages with residential choice
    • Srinivasan, S. and Ferreira, J., 2002. Travel behavior at the household level: understanding linkages with residential choice. Transportation Research Part D: Transport and Environment, 7 (3), 225–242. doi:10.1016/S1361-9209(01)00021-9
    • (2002) Transportation Research Part D: Transport and Environment , vol.7 , Issue.3 , pp. 225-242
    • Srinivasan, S.1    Ferreira, J.2
  • 28
    • 1242308945 scopus 로고    scopus 로고
    • Selecting the right objective measure for association analysis
    • Tan, P., Kumar, V., and Srivastava, J., 2004. Selecting the right objective measure for association analysis. Information Systems, 29 (4), 293–313. doi:10.1016/S0306-4379(03)00072-3
    • (2004) Information Systems , vol.29 , Issue.4 , pp. 293-313
    • Tan, P.1    Kumar, V.2    Srivastava, J.3
  • 30
    • 79952736100 scopus 로고    scopus 로고
    • Calculation of transit performance measures using smartcard data
    • Trépanier, M., Morency, C., and Agard, B., 2009. Calculation of transit performance measures using smartcard data. Journal of Public Transportation, 12 (1), 79–96.
    • (2009) Journal of Public Transportation , vol.12 , Issue.1 , pp. 79-96
    • Trépanier, M.1    Morency, C.2    Agard, B.3
  • 32
    • 84880983443 scopus 로고    scopus 로고
    • Unified estimator for excess journey time under heterogeneous passenger incidence behavior using smartcard data
    • Zhao, J., et al., 2013. Unified estimator for excess journey time under heterogeneous passenger incidence behavior using smartcard data. Transportation Research Part C: Emerging Technologies, 34, 70–88. doi:10.1016/j.trc.2013.05.009
    • (2013) Transportation Research Part C: Emerging Technologies , vol.34 , pp. 70-88
    • Zhao, J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.