-
1
-
-
21144479953
-
The Hele-Shaw problem and area-preserving curve-shortening motions
-
Zbl0780.35117 MR1219420
-
CHEN, X. The Hele-Shaw problem and area-preserving curve-shortening motions. Arch. Rational Mech. Anal. 123 (1993), 117-151. Zbl0780.35117 MR1219420
-
(1993)
Arch. Rational Mech. Anal.
, vol.123
, pp. 117-151
-
-
Chen, X.1
-
2
-
-
34248545694
-
Regularity for the one-phase Hele-Shaw problem from a Lipschitz initial surface
-
Zbl1189.35384 MR2306045
-
CHOI, S., JERISON, D., & KIM, I. Regularity for the one-phase Hele-Shaw problem from a Lipschitz initial surface. Amer. J. Math. 129 (2007), 527-582. Zbl1189.35384 MR2306045
-
(2007)
Amer. J. Math.
, vol.129
, pp. 527-582
-
-
Choi, S.1
Jerison, D.2
Kim, I.3
-
3
-
-
77949857482
-
Local regularization of the one-phase Hele-Shaw flow
-
Zbl1190.35229 MR2603767
-
CHOI, S., JERISON, D., & KIM, I. Local regularization of the one-phase Hele-Shaw flow. Indiana Univ. Math. J. 58 (2009), 2765-2804. Zbl1190.35229 MR2603767
-
(2009)
Indiana Univ. Math. J.
, vol.58
, pp. 2765-2804
-
-
Choi, S.1
Jerison, D.2
Kim, I.3
-
4
-
-
78650916026
-
Regularity of one-phase Stefan problem near Lipschitz initial data
-
Zbl1231.35318 MR2766502
-
CHOI, S., & KIM, I. C. Regularity of one-phase Stefan problem near Lipschitz initial data. Amer. J. Math. 132 (2010), 1693-1727. Zbl1231.35318 MR2766502
-
(2010)
Amer. J. Math.
, vol.132
, pp. 1693-1727
-
-
Choi, S.1
Kim, I.C.2
-
5
-
-
0000851461
-
Global solutions for small data to the Hele-Shaw problem
-
Zbl0808.35104 MR1223740
-
CONSTANTIN, P., & PUGH, M. Global solutions for small data to the Hele-Shaw problem. Nonlinearity 6 (1993), 393-415. Zbl0808.35104 MR1223740
-
(1993)
Nonlinearity
, vol.6
, pp. 393-415
-
-
Constantin, P.1
Pugh, M.2
-
6
-
-
34548446988
-
Well-posedness of the free-surface incompressible Euler equations with or without surface tension
-
Zbl1123.35038 MR2291920
-
COUTAND, D.,& SHKOLLER, S. Well-posedness of the free-surface incompressible Euler equations with or without surface tension. J. Amer. Math. Soc. 20 (2007), 829-930. Zbl1123.35038 MR2291920
-
(2007)
J. Amer. Math. Soc.
, vol.20
, pp. 829-930
-
-
Coutand, D.1
Shkoller, S.2
-
7
-
-
84891662791
-
On the Finite-Time Splash and Splat Singularities for the 3-D Free-Surface Euler Equations
-
Zbl1285.35071 MR3147437
-
COUTAND, D., & SHKOLLER, S. On the Finite-Time Splash and Splat Singularities for the 3-D Free-Surface Euler Equations. Comm. Math. Phys. 325 (2014), 143-183. Zbl1285.35071 MR3147437
-
(2014)
Comm. Math. Phys.
, vol.325
, pp. 143-183
-
-
Coutand, D.1
Shkoller, S.2
-
8
-
-
1642320714
-
All time smooth solutions of the one-phase Stefan problem and the Hele-Shaw flow
-
Zbl1099.35175 MR2038144
-
DASKALOPOULOS, P., & LEE, K.-A. All time smooth solutions of the one-phase Stefan problem and the Hele-Shaw flow. Comm. Partial Differential Equations 29 (2004), 71-89. Zbl1099.35175 MR2038144
-
(2004)
Comm. Partial Differential Equations
, vol.29
, pp. 71-89
-
-
Daskalopoulos, P.1
Lee, K.-A.2
-
9
-
-
84971155357
-
A variational inequality approach to Hele-Shaw flow with a moving boundary
-
Zbl0455.76043 MR0611303
-
ELLIOTT, C. M., & JANOVSKÝ, V. A variational inequality approach to Hele-Shaw flow with a moving boundary. Proc. Roy. Soc. Edinburgh Sect. A 88 (1981), 93-107. Zbl0455.76043 MR0611303
-
(1981)
Proc. Roy. Soc. Edinburgh Sect. A
, vol.88
, pp. 93-107
-
-
Elliott, C.M.1
Janovský, V.2
-
10
-
-
0003314144
-
Weak and variational methods for moving boundary problems
-
Pitman (Advanced Publishing Program), Boston, Mass., Zbl0476.35080 MR0650455
-
ELLIOTT, C. M., & OCKENDON, J. R. Weak and variational methods for moving boundary problems, vol. 59 of Research Notes in Mathematics. Pitman (Advanced Publishing Program), Boston, Mass., 1982. Zbl0476.35080 MR0650455
-
(1982)
Research Notes in Mathematics
, vol.59
-
-
Elliott, C.M.1
Ockendon, J.R.2
-
11
-
-
0000010015
-
Classical solutions for Hele-Shaw models with surface tension
-
Zbl1023.35527 MR1441859
-
ESCHER, J., & SIMONETT, G. Classical solutions for Hele-Shaw models with surface tension. Adv. Differential Equations 2 (1997), 619-642. Zbl1023.35527 MR1441859
-
(1997)
Adv. Differential Equations
, vol.2
, pp. 619-642
-
-
Escher, J.1
Simonett, G.2
-
12
-
-
0031478022
-
Classical solutions of multidimensional Hele-Shaw models
-
Zbl0888.35142 MR1466667
-
ESCHER, J., & SIMONETT, G. Classical solutions of multidimensional Hele-Shaw models. SIAM J. Math. Anal. 28 (1997), 1028-1047. Zbl0888.35142 MR1466667
-
(1997)
SIAM J. Math. Anal.
, vol.28
, pp. 1028-1047
-
-
Escher, J.1
Simonett, G.2
-
13
-
-
0001025274
-
A center manifold analysis for the Mullins-Sekerka model
-
Zbl0896.35142 MR1607952
-
ESCHER, J., & SIMONETT, G. A center manifold analysis for the Mullins-Sekerka model. J. Differential Equations 143 (1998), 267-292. Zbl0896.35142 MR1607952
-
(1998)
J. Differential Equations
, vol.143
, pp. 267-292
-
-
Escher, J.1
Simonett, G.2
-
14
-
-
0000990726
-
Nonlinear stability of a quasi-static Stefan problem with surface tension: A continuation approach
-
Zbl1072.35208MR1895715
-
FRIEDMAN, A., & REITICH, F. Nonlinear stability of a quasi-static Stefan problem with surface tension: a continuation approach. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 30 2 (2001), 341-403. Zbl1072.35208MR1895715
-
(2001)
Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4)
, vol.30
, Issue.2
, pp. 341-403
-
-
Friedman, A.1
Reitich, F.2
-
15
-
-
0000872629
-
Applications of variational inequalities to a moving boundary problem for Hele-Shaw flows
-
Zbl0605.76043 MR0777468
-
GUSTAFSSON, B. Applications of variational inequalities to a moving boundary problem for Hele-Shaw flows. SIAM J. Math. Anal. 16 (1985), 279-300. Zbl0605.76043 MR0777468
-
(1985)
SIAM J. Math. Anal.
, vol.16
, pp. 279-300
-
-
Gustafsson, B.1
-
16
-
-
0022664109
-
Cusp development in Hele-Shaw flow with a free surface
-
Zbl0592.76042 MR0821438
-
HOWISON, S. D. Cusp development in Hele-Shaw flow with a free surface. SIAM J. Appl. Math. 46 (1986), 20-26. Zbl0592.76042 MR0821438
-
(1986)
SIAM J. Appl. Math.
, vol.46
, pp. 20-26
-
-
Howison, S.D.1
-
17
-
-
0032350745
-
Existence results for Hele-Shaw flow driven by surface tension
-
Zbl0919.35005 MR1630665
-
PROKERT, G. Existence results for Hele-Shaw flow driven by surface tension. European J. Appl. Math. 9 (1998), 195-221. Zbl0919.35005 MR1630665
-
(1998)
European J. Appl. Math.
, vol.9
, pp. 195-221
-
-
Prokert, G.1
-
19
-
-
33645918199
-
Navier-Stokes equations
-
AMS Chelsea Publishing, Providence, RI, Reprint of the 1984 edition
-
TEMAM, R. Navier-Stokes equations. AMS Chelsea Publishing, Providence, RI, 2001. Theory and numerical analysis, Reprint of the 1984 edition.
-
(2001)
Theory and Numerical Analysis
-
-
Temam, R.1
-
20
-
-
79953189039
-
Large time behaviour of Hele-Shaw flow with injection or suction for perturbations of balls in R N
-
Zbl1219.35313 MR2781691
-
VONDENHOFF, E. Large time behaviour of Hele-Shaw flow with injection or suction for perturbations of balls in R N . IMA J. Appl. Math. 76 (2011), 219-241. Zbl1219.35313 MR2781691
-
(2011)
IMA J. Appl. Math.
, vol.76
, pp. 219-241
-
-
Vondenhoff, E.1
|