메뉴 건너뛰기




Volumn 84, Issue , 2014, Pages 214-223

Neural network model ensembles for building-level electricity load forecasts

Author keywords

Buildings; Load forecasting; Smart grid

Indexed keywords

ELECTRICITY LOAD; LOAD FORECASTING; NEURAL NETWORK MODEL; SMART GRID;

EID: 84907570987     PISSN: 03787788     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.enbuild.2014.08.004     Document Type: Article
Times cited : (156)

References (16)
  • 7
    • 84880266711 scopus 로고    scopus 로고
    • Energy analysis of a building using artificial neural network: A review
    • R. Kumar, R.K. Aggarwal, and J.D. Sharma Energy analysis of a building using artificial neural network: a review Elsevier Journal on Energy and Buildings 65 June 2013 352 358
    • (2013) Elsevier Journal on Energy and Buildings , vol.65 , Issue.JUNE , pp. 352-358
    • Kumar, R.1    Aggarwal, R.K.2    Sharma, J.D.3
  • 9
    • 79960527815 scopus 로고    scopus 로고
    • Short-term load forecasting with neural network ensembles: A comparative study
    • M. De Felice, and X. Yao Short-term load forecasting with neural network ensembles: a comparative study IEEE Computational Intelligence Magazine August 2011
    • (2011) IEEE Computational Intelligence Magazine
    • De Felice, M.1    Yao, X.2
  • 11
    • 84896085639 scopus 로고    scopus 로고
    • Forecasting energy consumption of multi-family residential buildings using support vector regression: Investigating the impact of temporal and spatial monitoring granularity on performance accuracy
    • R.K. Jain, K.M. Smith, P.J. Culligan, and J.E. Taylor Forecasting energy consumption of multi-family residential buildings using support vector regression: Investigating the impact of temporal and spatial monitoring granularity on performance accuracy Applied Energy 123 June (15) 2014 168 178
    • (2014) Applied Energy , vol.123 , Issue.JUNE 15 , pp. 168-178
    • Jain, R.K.1    Smith, K.M.2    Culligan, P.J.3    Taylor, J.E.4
  • 13
    • 13844306850 scopus 로고    scopus 로고
    • Prediction of hourly energy consumption in buildings based on a feedback artificial neural network
    • P.A. Gonzalez, and J.M. Zamarreno Prediction of hourly energy consumption in buildings based on a feedback artificial neural network Energy and Buildings 37 2005 595 601
    • (2005) Energy and Buildings , vol.37 , pp. 595-601
    • Gonzalez, P.A.1    Zamarreno, J.M.2
  • 14
    • 84877686108 scopus 로고    scopus 로고
    • Load forecast model switching scheme for improved robustness to changes in building energy consumption patterns
    • J. Yoo, and K. Hur Load forecast model switching scheme for improved robustness to changes in building energy consumption patterns Energies 6 3 2013 1329 1343
    • (2013) Energies , vol.6 , Issue.3 , pp. 1329-1343
    • Yoo, J.1    Hur, K.2
  • 15
    • 0030104449 scopus 로고    scopus 로고
    • Artificial neural networks: A tutorial
    • A.K. Jain, M. Jianchang, and K.M. Mohiuddin Artificial neural networks: a tutorial Computer 29 3 1996 31 44
    • (1996) Computer , vol.29 , Issue.3 , pp. 31-44
    • Jain, A.K.1    Jianchang, M.2    Mohiuddin, K.M.3
  • 16
    • 0007835971 scopus 로고    scopus 로고
    • Time series prediction with multilayer perceptron, FIR and Elman neural networks
    • INNS Press San Diego, USA
    • T. Koskela, J. Saarinen, and K. Kaski Time series prediction with multilayer perceptron, FIR and Elman neural networks Proceedings of the World Congress on Neural Networks 1996 INNS Press San Diego, USA 491 496
    • (1996) Proceedings of the World Congress on Neural Networks , pp. 491-496
    • Koskela, T.1    Saarinen, J.2    Kaski, K.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.