메뉴 건너뛰기




Volumn 28, Issue 1, 1997, Pages 145-164

Fisher wave fronts for the Lotka-Volterra competition model with diffusion

Author keywords

Continuation for heteroclinic orbits; Fisher wave front; Lotka Volterra model

Indexed keywords

BOUNDARY CONDITIONS; MATHEMATICAL MODELS; MATHEMATICAL OPERATORS; PARAMETER ESTIMATION; THEOREM PROVING;

EID: 0030737408     PISSN: 0362546X     EISSN: None     Source Type: Journal    
DOI: 10.1016/0362-546X(95)00142-I     Document Type: Article
Times cited : (128)

References (14)
  • 1
    • 0002722044 scopus 로고
    • Étude de l'équation de la diffusion avec croissance de la quantité de matière et son application à un problème biologique
    • KOLMOGOROFF A., PETROVSKY I. & PISCOUNOFF N., Étude de l'équation de la diffusion avec croissance de la quantité de matière et son application à un problème biologique, Moscow Univ. Math. Bull. 1, 1-25 (1937).
    • (1937) Moscow Univ. Math. Bull. , vol.1 , pp. 1-25
    • Kolmogoroff, A.1    Petrovsky, I.2    Piscounoff, N.3
  • 2
    • 0346415941 scopus 로고
    • Existence and stability of travelling wave solutions of competition models: A degree theoretic approach
    • GARDNER R. A., Existence and stability of travelling wave solutions of competition models: A degree theoretic approach, J. diff. Eqns 44, 343-364 (1982).
    • (1982) J. Diff. Eqns , vol.44 , pp. 343-364
    • Gardner, R.A.1
  • 3
    • 0000329668 scopus 로고
    • An application of the generalized Morse index to travelling wave solutions of a competitive reaction-diffusion model
    • CONLEY C. & GARDNER R., An application of the generalized Morse index to travelling wave solutions of a competitive reaction-diffusion model, Indiana Univ. Math. J. 33, 319-343 (1984).
    • (1984) Indiana Univ. Math. J. , vol.33 , pp. 319-343
    • Conley, C.1    Gardner, R.2
  • 4
    • 84972564231 scopus 로고
    • A 3-component system of competition and diffusion
    • MIMURA M. & FIFE P. C., A 3-component system of competition and diffusion, Hiroshima Math. J. 16, 189-207 (1986).
    • (1986) Hiroshima Math. J. , vol.16 , pp. 189-207
    • Mimura, M.1    Fife, P.C.2
  • 6
    • 0040663108 scopus 로고
    • The asymptotic behavior of solutions of a system of reaction-diffusion equations which models the Belousov-Zhabotinskii chemical
    • KLAASEN G. A. & TROY W. C., The asymptotic behavior of solutions of a system of reaction-diffusion equations which models the Belousov-Zhabotinskii chemical, J. diff. Eqns 40, 253-278 (1981).
    • (1981) J. Diff. Eqns , vol.40 , pp. 253-278
    • Klaasen, G.A.1    Troy, W.C.2
  • 7
    • 0042337230 scopus 로고
    • The stability of travelling wave front solutions of a reaction-diffusion system
    • KLAASEN G. A. & TROY W. C., The stability of travelling wave front solutions of a reaction-diffusion system, SIAM J. Appl, Math. 41, 145-167 (1981).
    • (1981) SIAM J. Appl, Math. , vol.41 , pp. 145-167
    • Klaasen, G.A.1    Troy, W.C.2
  • 8
    • 0003147834 scopus 로고
    • Propagating front for competing species equations with diffusion
    • TANG M. M. & FIFE P. C., Propagating front for competing species equations with diffusion, Archs ration. Mech. Analysis 73, 69-77 (1980),
    • (1980) Archs Ration. Mech. Analysis , vol.73 , pp. 69-77
    • Tang, M.M.1    Fife, P.C.2
  • 9
    • 0041335177 scopus 로고
    • Singular perturbation analysis of travelling waves for diffusive Lotka-Volterra competition models
    • Baltzer, Basel
    • HOSONO Y., Singular perturbation analysis of travelling waves for diffusive Lotka-Volterra competition models, Numerical and Applied Mathematics Part II, pp. 687-692. Baltzer, Basel (1989).
    • (1989) Numerical and Applied Mathematics Part II , pp. 687-692
    • Hosono, Y.1
  • 11
    • 0000393425 scopus 로고
    • Homoclinic and heteroclinic bifurcations of vector fields
    • KOKUBU H., Homoclinic and heteroclinic bifurcations of vector fields, Japan J. Appl. Math. 5, 455-501 (1988).
    • (1988) Japan J. Appl. Math. , vol.5 , pp. 455-501
    • Kokubu, H.1
  • 14
    • 84972539066 scopus 로고
    • Existence of non-constant stable equilibria in competition-diffusion equations
    • KAN-ON Y. & YANAGIDA E., Existence of non-constant stable equilibria in competition-diffusion equations, Hiroshima Math. J. 23, 193-221 (1993).
    • (1993) Hiroshima Math. J. , vol.23 , pp. 193-221
    • Kan-On, Y.1    Yanagida, E.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.