메뉴 건너뛰기




Volumn , Issue , 2014, Pages 65-68

A single SVD sparse dictionary learning algorithm for FMRI data analysis

Author keywords

functional magnetic resonance imaging (fMRI) analysis; minimum norm; Sparse dictionary learning; sparsity assumption; SVD

Indexed keywords

INDEPENDENT COMPONENT ANALYSIS; MAGNETIC RESONANCE IMAGING; SIGNAL PROCESSING; SINGULAR VALUE DECOMPOSITION;

EID: 84907402611     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/SSP.2014.6884576     Document Type: Conference Paper
Times cited : (26)

References (9)
  • 2
    • 33645224023 scopus 로고    scopus 로고
    • Umixing fMRI with independent component analysis
    • V. D. Calhoun and T. Adali, "Umixing fMRI with independent component analysis," IEEE Eng. Med. Biol. Mag., vol. 25, pp. 79-90, 2006.
    • (2006) IEEE Eng. Med. Biol. Mag. , vol.25 , pp. 79-90
    • Calhoun, V.D.1    Adali, T.2
  • 3
    • 67649811101 scopus 로고    scopus 로고
    • Independent component analysis for brain fmri does not select for independence
    • I. Daubechies et al., "Independent component analysis for brain fmri does not select for independence," Proc. Nat. Acad. Sci., vol. 106, pp. 1415-1422, 2009.
    • (2009) Proc. Nat. Acad. Sci. , vol.106 , pp. 1415-1422
    • Daubechies, I.1
  • 4
    • 79955571265 scopus 로고    scopus 로고
    • A data-driven sparse GLM for fMRI analysis using sparse dictionary learning with MDL criterion
    • K. Lee, S. Tak, and J. C. Ye, "A data-driven sparse GLM for fMRI analysis using sparse dictionary learning with MDL criterion," IEEE Trans. Med. Imaging, vol. 30, pp. 1076-1089, 2011.
    • (2011) IEEE Trans. Med. Imaging , vol.30 , pp. 1076-1089
    • Lee, K.1    Tak, S.2    Ye, J.C.3
  • 5
    • 84881629970 scopus 로고    scopus 로고
    • Improving functional connectivity detection in fMRI by combining sparse dictionary learning and canonical correlation analysis
    • M. U. Khalid and A. K. Seghouane, "Improving functional connectivity detection in fMRI by combining sparse dictionary learning and canonical correlation analysis," In Proc. of Inter. Symp. on Biom. Imaging 2013, pp. 286-289, 2013.
    • (2013) Proc. of Inter. Symp. on Biom. Imaging 2013 , pp. 286-289
    • Khalid, M.U.1    Seghouane, A.K.2
  • 6
    • 33750383209 scopus 로고    scopus 로고
    • K-SVD: Anlgorithm for desiging overcomplete dictionaries for sparse representation
    • M. Aharon et al., "K-SVD: Anlgorithm for desiging overcomplete dictionaries for sparse representation," IEEE Trans. on sig. Proc., vol. 54, pp. 4311-4322, 2006.
    • (2006) IEEE Trans. on Sig. Proc. , vol.54 , pp. 4311-4322
    • Aharon, M.1
  • 7
    • 0037313218 scopus 로고    scopus 로고
    • Dictionary learning algorithms for sparse representation
    • K. Kreutz-Delgado et al., "Dictionary learning algorithms for sparse representation," Neural Computation, vol. 15, pp. 349-396, 2003.
    • (2003) Neural Computation , vol.15 , pp. 349-396
    • Kreutz-Delgado, K.1
  • 8
    • 57349143370 scopus 로고    scopus 로고
    • Atoms of all channels, unite! average case analysis of multi-channel sparse recovery using greedy algorithms
    • R. Gribonval, H. Rauhut, K. Schnass, and P. Vandergheynst, "Atoms of all channels, unite! average case analysis of multi-channel sparse recovery using greedy algorithms," J. Fourier Anal. Appl., vol. 14, pp. 655687, 2008.
    • (2008) J. Fourier Anal. Appl. , vol.14 , pp. 655687
    • Gribonval, R.1    Rauhut, H.2    Schnass, K.3    Vandergheynst, P.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.