-
1
-
-
3142740222
-
-
B. Cantor, I. T. H. Chang, P. Knight, A. J. B. Vincent, Mater. Sci. Eng. A 375-377, 213-218 (2004).
-
(2004)
Mater. Sci. Eng. A
, vol.375-377
, pp. 213-218
-
-
Cantor, B.1
Chang, I.T.H.2
Knight, P.3
Vincent, A.J.B.4
-
3
-
-
2542618328
-
-
C.-Y. Hsu, J.-W. Yeh, S.-K. Chen, T.-T. Shun, Metall. Mater. Trans. A 35, 1465-1469 (2004).
-
(2004)
Metall. Mater. Trans. A
, vol.35
, pp. 1465-1469
-
-
Hsu, C.-Y.1
Yeh, J.-W.2
Chen, S.-K.3
Shun, T.-T.4
-
4
-
-
79952280046
-
-
O. N. Senkov, G. B. Wilks, J. M. Scott, D. B. Miracle, Intermetallics 19, 698-706 (2011).
-
(2011)
Intermetallics
, vol.19
, pp. 698-706
-
-
Senkov, O.N.1
Wilks, G.B.2
Scott, J.M.3
Miracle, D.B.4
-
5
-
-
84881312426
-
-
F. Otto et al., Acta Mater. 61, 5743-5755 (2013).
-
(2013)
Acta Mater.
, vol.61
, pp. 5743-5755
-
-
Otto, F.1
-
7
-
-
84875217851
-
-
F. Otto, Y. Yang, H. Bei, E. P. George, Acta Mater. 61, 2628-2638 (2013).
-
(2013)
Acta Mater.
, vol.61
, pp. 2628-2638
-
-
Otto, F.1
Yang, Y.2
Bei, H.3
George, E.P.4
-
8
-
-
84872826929
-
-
W. H. Liu, Y. Wu, J. Y. He, T. G. Nieh, Z. P. Lu, Scr. Mater. 68, 526-529 (2013).
-
(2013)
Scr. Mater.
, vol.68
, pp. 526-529
-
-
Liu, W.H.1
Wu, Y.2
He, J.Y.3
Nieh, T.G.4
Lu, Z.P.5
-
11
-
-
84855502585
-
-
See supplementary materials on
-
See supplementary materials on Science Online.
-
Science Online
-
-
-
12
-
-
84928804159
-
-
note
-
As a preliminary estimate of the fracture resistance, the area under the load displacement curve of a tensile test was used to compute the fracture energy (sometimes termed the work to fracture), which was calculated from this area divided by twice the area of the crack surface.
-
-
-
-
14
-
-
84928804144
-
-
note
-
KQ values refer to fracture toughnesses that are not necessarily valid by ASTM standards (i.e., they do not meet the J-validity and/or plane strain conditions). Consequently, these toughnesses are likely to be inflated relative to truly valid numbers and are size- and geometry-dependent; they are not strictly material parameters. When comparing these values to the toughnesses measured in this study for CoCrFeMnNi, it is important to note that all values determined here for the high-entropy alloy were strictly valid, meeting ASTM standards for both J validity and plane strain.
-
-
-
-
16
-
-
84879490382
-
-
S. Rosinski, M. Grossbeck, T. Allen, A. Kumar, Eds. ASTM International, West Conshohocken, PA
-
M. Sokolov et al., in Effects of Radiation on Materials: 20th International Symposium, S. Rosinski, M. Grossbeck, T. Allen, A. Kumar, Eds. (ASTM International, West Conshohocken, PA, 2001), pp. 125-147.
-
(2001)
Effects of Radiation on Materials: 20th International Symposium
, pp. 125-147
-
-
Sokolov, M.1
-
20
-
-
84928781579
-
-
note
-
Note that despite the uncertainty in the (valid) toughness values for the stainless and high Ni steels, their upper toughness range could possibly be higher than the current measurements for the CrMnFeCoNi alloy. It must be remembered, however, that these materials are microalloyed and highly tuned with respect to grain size/orientation, tempering, precipitation hardening, etc., to achieve their mechanical properties, whereas the current CrMnFeCoNi alloy is a single-phase material that undoubtedly can be further improved through second-phase additions and grain control.
-
-
-
-
21
-
-
0030264299
-
-
J. Stampfl, S. Scherer, M. Gruber, O. Kolednik, Appl. Phys. A 63, 341-346 (1996).
-
(1996)
Appl. Phys. A
, vol.63
, pp. 341-346
-
-
Stampfl, J.1
Scherer, S.2
Gruber, M.3
Kolednik, O.4
-
22
-
-
0002452132
-
-
J. Stampfl, S. Scherer, M. Berchthaler, M. Gruber, O. Kolednik, Int. J. Fract. 78, 35-44 (1996).
-
(1996)
Int. J. Fract.
, vol.78
, pp. 35-44
-
-
Stampfl, J.1
Scherer, S.2
Berchthaler, M.3
Gruber, M.4
Kolednik, O.5
-
27
-
-
84928793099
-
-
note
-
Details of the critical strain model for ductile fracture (25, 26) and the method of estimating the fracture toughness are described in the supplementary materials.
-
-
-
-
33
-
-
33750607762
-
-
M. Dao, L. Lu, Y. F. Shen, S. Suresh, Acta Mater. 54, 5421-5432 (2006).
-
(2006)
Acta Mater.
, vol.54
, pp. 5421-5432
-
-
Dao, M.1
Lu, L.2
Shen, Y.F.3
Suresh, S.4
-
34
-
-
59149091661
-
-
L. Lu, X. Chen, X. Huang, K. Lu, Science 323, 607-610 (2009).
-
(2009)
Science
, vol.323
, pp. 607-610
-
-
Lu, L.1
Chen, X.2
Huang, X.3
Lu, K.4
-
36
-
-
79951683470
-
-
A. Singh, L. Tang, M. Dao, L. Lu, S. Suresh, Acta Mater. 59, 2437-2446 (2011).
-
(2011)
Acta Mater.
, vol.59
, pp. 2437-2446
-
-
Singh, A.1
Tang, L.2
Dao, M.3
Lu, L.4
Suresh, S.5
-
41
-
-
84883459885
-
-
O. Grässel, G. Frommeyer, C. Derder, H. Hofmann, J. Phys. IV 07, C5-383-C5-388 (1997).
-
(1997)
J. Phys. IV
, vol.7
, pp. C5383-C5388
-
-
Grässel, O.1
Frommeyer, G.2
Derder, C.3
Hofmann, H.4
-
42
-
-
0037954904
-
-
O. Grässel, L. Krüger, G. Frommeyer, L. W. Meyer, Int. J. Plast. 16, 1391-1409 (2000).
-
(2000)
Int. J. Plast.
, vol.16
, pp. 1391-1409
-
-
Grässel, O.1
Krüger, L.2
Frommeyer, G.3
Meyer, L.W.4
-
46
-
-
0022926744
-
-
R. P. Reed, A. F. Clark, Eds. Springer, New York
-
R. D. Stout, S. J. Wiersma, in Advances in Cryogenic Engineering Materials, R. P. Reed, A. F. Clark, Eds. (Springer, New York, 1986), pp. 389-395.
-
(1986)
Advances in Cryogenic Engineering Materials
, pp. 389-395
-
-
Stout, R.D.1
Wiersma, S.J.2
-
49
-
-
0003648660
-
-
M. F. Ashby, Ed. Butterworth-Heinemann, Oxford, ed. 4
-
M. F. Ashby, in Materials Selection in Mechanical Design, M. F. Ashby, Ed. (Butterworth-Heinemann, Oxford, ed. 4, 2011), pp. 31-56.
-
(2011)
Materials Selection in Mechanical Design
, pp. 31-56
-
-
Ashby, M.F.1
-
52
-
-
24944499649
-
-
A. Kawashima, H. Kurishita, H. Kimura, T. Zhang, A. Inoue, Mater. Trans. 46, 1725-1732 (2005).
-
(2005)
Mater. Trans.
, vol.46
, pp. 1725-1732
-
-
Kawashima, A.1
Kurishita, H.2
Kimura, H.3
Zhang, T.4
Inoue, A.5
-
53
-
-
54949091181
-
-
A. Shamimi Nouri, X. J. Gu, S. J. Poon, G. J. Shiflet, J. J. Lewandowski, Philos. Mag. Lett. 88, 853-861 (2008).
-
(2008)
Philos. Mag. Lett.
, vol.88
, pp. 853-861
-
-
Shamimi Nouri, A.1
Gu, X.J.2
Poon, S.J.3
Shiflet, G.J.4
Lewandowski, J.J.5
|