메뉴 건너뛰기




Volumn 1, Issue , 2014, Pages 1062-1072

Spectral unsupervised parsing with additive tree metrics

Author keywords

[No Author keywords available]

Indexed keywords

ADDITIVES; COMPUTATIONAL LINGUISTICS; FORESTRY; MACHINE LEARNING; SYNTACTICS;

EID: 84906927796     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.3115/v1/p14-1100     Document Type: Conference Paper
Times cited : (19)

References (42)
  • 2
    • 71149118396 scopus 로고    scopus 로고
    • Grammatical inference as a principal component analysis problem
    • R. Bailly, F. Denis, and L. Ralaivola. 2009. Grammatical inference as a principal component analysis problem. In Proceedings of ICML.
    • (2009) Proceedings of ICML
    • Bailly, R.1    Denis, F.2    Ralaivola, L.3
  • 8
    • 84933530882 scopus 로고
    • Approximating discrete probability distributionswith dependence trees
    • C. K. Chow and C. N. Liu. 1968. Approximating Discrete Probability DistributionsWith Dependence Trees. IEEE Transactions on Information Theory, IT-14:462-467.
    • (1968) IEEE Transactions on Information Theory , vol.IT-14 , pp. 462-467
    • Chow, C.K.1    Liu, C.N.2
  • 9
    • 84858398441 scopus 로고    scopus 로고
    • Shared logistic normal distributions for soft parameter tying in unsupervised grammar induction
    • S. B. Cohen and N. A. Smith. 2009. Shared logistic normal distributions for soft parameter tying in unsupervised grammar induction. In Proceedings of HLT-NAACL.
    • (2009) Proceedings of HLT-NAACL
    • Cohen, S.B.1    Smith, N.A.2
  • 10
    • 84865284030 scopus 로고    scopus 로고
    • Empirical risk minimization for probabilistic grammars: Sample complexity and hardness of learning
    • S. B. Cohen and N. A. Smith. 2012. Empirical risk minimization for probabilistic grammars: Sample complexity and hardness of learning. Computational Linguistics, 38(3):479-526.
    • (2012) Computational Linguistics , vol.38 , Issue.3 , pp. 479-526
    • Cohen, S.B.1    Smith, N.A.2
  • 12
    • 28944439772 scopus 로고    scopus 로고
    • The minimum evolution distance-based approach to phylogenetic inference
    • R. Desper and O. Gascuel. 2005. The minimum evolution distance-based approach to phylogenetic inference. Mathematics of evolution and phylogeny, pages 1-32.
    • (2005) Mathematics of Evolution and Phylogeny , pp. 1-32
    • Desper, R.1    Gascuel, O.2
  • 13
    • 84867133604 scopus 로고    scopus 로고
    • Two step cca: A new spectral method for estimating vector models of words
    • P. S. Dhillon, J. Rodu, D. P. Foster, and L. H. Ungar. 2012. Two step cca: A new spectral method for estimating vector models of words. In Proceedings of ICML.
    • (2012) Proceedings of ICML
    • Dhillon, P.S.1    Rodu, J.2    Foster, D.P.3    Ungar, L.H.4
  • 14
    • 85149142007 scopus 로고    scopus 로고
    • Efficient parsing for bilexical context-free grammars and head automaton grammars
    • J. Eisner and G. Satta. 1999. Efficient parsing for bilexical context-free grammars and head automaton grammars. In Proceedings of ACL.
    • (1999) Proceedings of ACL
    • Eisner, J.1    Satta, G.2
  • 17
    • 84903468764 scopus 로고    scopus 로고
    • Concavity and initialization for unsupervised dependency parsing
    • K. Gimpel and N.A. Smith. 2012. Concavity and initialization for unsupervised dependency parsing. In Proceedings of NAACL.
    • (2012) Proceedings of NAACL
    • Gimpel, K.1    Smith, N.A.2
  • 18
    • 84876791184 scopus 로고    scopus 로고
    • A feature-rich constituent context model for grammar induction
    • D. Golland, J. DeNero, and J. Uszkoreit. 2012. A feature-rich constituent context model for grammar induction. In Proceedings of ACL.
    • (2012) Proceedings of ACL
    • Golland, D.1    Denero, J.2    Uszkoreit, J.3
  • 19
    • 84907374772 scopus 로고    scopus 로고
    • Nonconvex global optimization for latent-variable models
    • M. Gormley and J. Eisner. 2013. Nonconvex global optimization for latent-variable models. In Proceedings of ACL.
    • (2013) Proceedings of ACL
    • Gormley, M.1    Eisner, J.2
  • 22
    • 84863408489 scopus 로고    scopus 로고
    • Improving unsupervised dependency parsing with richer contexts and smoothing
    • W. P. Headden, M. Johnson, and D. McClosky. 2009. Improving unsupervised dependency parsing with richer contexts and smoothing. In Proceedings of NAACL-HLT.
    • (2009) Proceedings of NAACL-HLT
    • Headden, W.P.1    Johnson, M.2    McClosky, D.3
  • 23
    • 84898066687 scopus 로고    scopus 로고
    • A spectral algorithm for learning hidden markov models
    • D. Hsu, S. Kakade, and T. Zhang. 2009. A spectral algorithm for learning hidden Markov models. In Proceedings of COLT.
    • (2009) Proceedings of COLT
    • Hsu, D.1    Kakade, S.2    Zhang, T.3
  • 27
    • 85061893834 scopus 로고    scopus 로고
    • A generative constituent-context model for improved grammar induction
    • D. Klein and C. D. Manning. 2002. A generative constituent-context model for improved grammar induction. In Proceedings of ACL.
    • (2002) Proceedings of ACL
    • Klein, D.1    Manning, C.D.2
  • 28
    • 77956518150 scopus 로고    scopus 로고
    • On sparse nonparametric conditional covariance selection
    • M. Kolar, A. P. Parikh, and E. P. Xing. 2010a. On sparse nonparametric conditional covariance selection. In Proceedings of ICML.
    • (2010) Proceedings of ICML
    • Kolar, M.1    Parikh, A.P.2    Xing, E.P.3
  • 31
  • 33
    • 0027185401 scopus 로고
    • Theoretical foundation of the minimum-evolution method of phylogenetic inference
    • A. Rzhetsky and M. Nei. 1993. Theoretical foundation of the minimum-evolution method of phylogenetic inference. Molecular Biology and Evolution, 10(5):1073-1095.
    • (1993) Molecular Biology and Evolution , vol.10 , Issue.5 , pp. 1073-1095
    • Rzhetsky, A.1    Nei, M.2
  • 34
    • 0023375195 scopus 로고
    • The neighbor-joining method: A new method for reconstructing phylogenetic trees
    • N. Saitou and M. Nei. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular biology and evolution, 4(4):406-425.
    • (1987) Molecular Biology and Evolution , vol.4 , Issue.4 , pp. 406-425
    • Saitou, N.1    Nei, M.2
  • 35
    • 80053271788 scopus 로고    scopus 로고
    • Fast unsupervised incremental parsing
    • Y. Seginer. 2007. Fast unsupervised incremental parsing. In Proceedings of ACL.
    • (2007) Proceedings of ACL
    • Seginer, Y.1
  • 36
    • 84859905260 scopus 로고    scopus 로고
    • Contrastive estimation: Training log-linear models on unlabeled data
    • N. A. Smith and J. Eisner. 2005. Contrastive estimation: Training log-linear models on unlabeled data. In Proceedings of ACL.
    • (2005) Proceedings of ACL
    • Smith, N.A.1    Eisner, J.2
  • 38
    • 84858423134 scopus 로고    scopus 로고
    • From baby steps to leapfrog: How less is more in unsupervised dependency parsing
    • V. I. Spitkovsky, H. Alshawi, and D. Jurafsky. 2010a. From baby steps to leapfrog: how less is more in unsupervised dependency parsing. In Proceedings of NAACL.
    • (2010) Proceedings of NAACL
    • Spitkovsky, V.I.1    Alshawi, H.2    Jurafsky, D.3
  • 40
    • 84926302248 scopus 로고    scopus 로고
    • Breaking out of local optima with count transforms and model recombination: A study in grammar induction
    • V. I. Spitkovsky, H. Alshawi, and D. Jurafsky. 2013. Breaking out of local optima with count transforms and model recombination: A study in grammar induction. In Proceedings of EMNLP.
    • (2013) Proceedings of EMNLP
    • Spitkovsky, V.I.1    Alshawi, H.2    Jurafsky, D.3
  • 41
    • 80053495924 scopus 로고    scopus 로고
    • Word representations: A simple and general method for semi-supervised learning
    • J. P. Turian, L.-A. Ratinov, and Y. Bengio. 2010. Word representations: A simple and general method for semi-supervised learning. In Proceedings of ACL.
    • (2010) Proceedings of ACL
    • Turian, J.P.1    Ratinov, L.-A.2    Bengio, Y.3
  • 42
    • 77955601966 scopus 로고    scopus 로고
    • Time varying undirected graphs
    • S. Zhou, J. Lafferty, and L. Wasserman. 2010. Time varying undirected graphs. Machine Learning, 80(2-3):295-319.
    • (2010) Machine Learning , vol.80 , Issue.2-3 , pp. 295-319
    • Zhou, S.1    Lafferty, J.2    Wasserman, L.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.