-
1
-
-
80053343111
-
A hybrid Markov/semi-Markov conditional random field for sequence segmentation
-
Galen Andrew. 2006. A hybrid Markov/semi-Markov conditional random field for sequence segmentation. In Proceedings of EMNLP.
-
(2006)
Proceedings of EMNLP
-
-
Andrew, G.1
-
4
-
-
0001029084
-
Word identification for mandarin chinese sentences
-
Keh-Jiann Chen and Shing-Huan Liu. 1992. Word identification for mandarin chinese sentences. In Proceedings of COLING.
-
(1992)
Proceedings of COLING
-
-
Chen, K.-J.1
Liu, S.-H.2
-
5
-
-
85127836544
-
Discriminative training methods for hidden Markov models: Theory and experiments with perceptron algorithms
-
Michael Collins. 2002. Discriminative training methods for hidden markov models: theory and experiments with perceptron algorithms. In Proceedings of EMNLP.
-
(2002)
Proceedings of EMNLP
-
-
Collins, M.1
-
6
-
-
84859032829
-
Modelbased aligner combination using dual decomposition
-
John DeNero and Klaus Macherey. 2011. Modelbased aligner combination using dual decomposition. In Proceedings of ACL.
-
(2011)
Proceedings of ACL
-
-
Denero, J.1
MacHerey, K.2
-
8
-
-
85149133182
-
Improved source-channel models for Chinese word segmentation
-
Jianfeng Gao, Mu Li, and Chang-Ning Huang. 2003. Improved source-channel models for Chinese word segmentation. In Proceedings of ACL.
-
(2003)
Proceedings of ACL
-
-
Gao, J.1
Li, M.2
Huang, C.-N.3
-
13
-
-
84875138356
-
A tutorial on dual decomposition and Lagrangian relaxation for inference in natural language processing
-
Alexander M. Rush and Michael Collins. 2012. A tutorial on dual decomposition and Lagrangian relaxation for inference in natural language processing. JAIR, 45:305-362.
-
(2012)
JAIR
, vol.45
, pp. 305-362
-
-
Rush, A.M.1
Collins, M.2
-
14
-
-
80053227279
-
On dual decomposition and linear programming relaxations for natural language processing
-
Alexander M. Rush, David Sontag, Michael Collins, and Tommi Jaakkola. 2010. On dual decomposition and linear programming relaxations for natural language processing. In Proceedings of EMNLP.
-
(2010)
Proceedings of EMNLP
-
-
Rush, A.M.1
Sontag, D.2
Collins, M.3
Jaakkola, T.4
-
17
-
-
84863337519
-
A discriminative latent variable Chinese segmenter with hybrid word/character information
-
Xu Sun, Yaozhong Zhang, Takuya Matsuzaki, Yoshimasa Tsuruoka, and Jun'ichi Tsujii. 2009. A discriminative latent variable chinese segmenter with hybrid word/character information. In Proceedings of HLT-NAACL.
-
(2009)
Proceedings of HLT-NAACL
-
-
Sun, X.1
Zhang, Y.2
Matsuzaki, T.3
Tsuruoka, Y.4
Tsujii, J.5
-
18
-
-
80053248414
-
Word-based and character-based-word segmentation models: Comparison and combination
-
Weiwei Sun. 2010. Word-based and character-based-word segmentation models: Comparison and combination. In Proceedings of COLING.
-
(2010)
Proceedings of COLING
-
-
Sun, W.1
-
21
-
-
80053417765
-
A character-based joint model for Chinese word segmentation
-
Kun Wang, Chengqing Zong, and Keh-Yih Su. 2010. A character-based joint model for chinese word segmentation. In Proceedings of COLING.
-
(2010)
Proceedings of COLING
-
-
Wang, K.1
Zong, C.2
Su, K.-Y.3
-
22
-
-
84907304982
-
Joint word alignment and bilingual named entity recognition using dual decomposition
-
Mengqiu Wang, Wanxiang Che, and Christopher D. Manning. 2013. Joint word alignment and bilingual named entity recognition using dual decomposition. In Proceedings of ACL.
-
(2013)
Proceedings of ACL
-
-
Wang, M.1
Che, W.2
Manning, C.D.3
-
24
-
-
84860530065
-
Chinese segmentation with a word-based perceptron algorithm
-
Yue Zhang and Stephen Clark. 2007. Chinese segmentation with a word-based perceptron algorithm. In Proceedings of ACL.
-
(2007)
Proceedings of ACL
-
-
Zhang, Y.1
Clark, S.2
-
25
-
-
85119977662
-
Subword-based tagging by conditional random fields for Chinese word segmentation
-
Ruiqiang Zhang, Genichiro Kikui, and Eiichiro Sumita. 2006. Subword-based tagging by conditional random fields for Chinese word segmentation. In Proceedings of HLT-NAACL.
-
(2006)
Proceedings of HLT-NAACL
-
-
Zhang, R.1
Kikui, G.2
Sumita, E.3
|