-
1
-
-
38049057103
-
Combination of machine learning methods for optimum Chinese word segmentation
-
Jeju, Korea
-
Masayuki Asahara, Kenta Fukuoka, Ai Azuma, Chooi-Ling Goh, Yotaro Watanabe, Yuji Ma-tsumoto and Takashi Tsuzuki, 2005. Combination of machine learning methods for optimum Chinese word segmentation. In Proceedings of the Fourth SIGHAN Workshop on Chinese Language Processing, pages 134-137, Jeju, Korea.
-
(2005)
Proceedings of the Fourth SIGHAN Workshop on Chinese Language Processing
, pp. 134-137
-
-
Asahara, M.1
Fukuoka, K.2
Azuma, A.3
Goh, C.-L.4
Watanabe, Y.5
Ma-Tsumoto, Y.6
Tsuzuki, T.7
-
4
-
-
85127836544
-
Discriminative training methods for hidden markov models: Theory and experiments with perceptron algorithms
-
Philadelphia
-
Michael Collins, 2002. Discriminative training methods for hidden markov models: theory and experiments with perceptron algorithms. In Proceedings of EMNLP, pages 1-8, Philadelphia.
-
(2002)
Proceedings of EMNLP
, pp. 1-8
-
-
Collins, M.1
-
6
-
-
85149133182
-
Improved source-channel models for chinese word segmentation
-
Jianfeng Gao, Mu Li and Chang-Ning Huang, 2003. Improved Source-Channel Models for Chinese Word Segmentation. In Proceedings of ACL, pages 272-279.
-
(2003)
Proceedings of ACL
, pp. 272-279
-
-
Gao, J.1
Li, M.2
Huang, C.-N.3
-
7
-
-
84859904385
-
A cascaded linear model for joint chinese word segmentation and part-of-speech tagging
-
Wenbin Jiang, Liang Huang, Qun Liu and Yajuan Lu, 2008. A Cascaded Linear Model for Joint Chinese Word Segmentation and Part-of-Speech Tagging. In Proceedings of ACL, pages 897-904.
-
(2008)
Proceedings of ACL
, pp. 897-904
-
-
Jiang, W.1
Huang, L.2
Liu, Q.3
Lu, Y.4
-
8
-
-
0142192295
-
Conditional random fields: Probabilistic models for segmenting and labeling sequence data
-
John Lafferty, Andrew McCallum and Fernando Pereira, 2001. Conditional Random Fields: Prob-abilistic Models for Segmenting and Labeling Sequence Data. In Proceedings of ICML, pages 282-289.
-
(2001)
Proceedings of ICML
, pp. 282-289
-
-
Lafferty, J.1
Mccallum, A.2
Pereira, F.3
-
9
-
-
77957847281
-
Chinese part-of-speech tagging: One-at-a-time or all-at- once? word-based or character-based
-
Hwee Tou Ng and Jin Kiat Low, 2004. Chinese part-of-speech tagging: one-at-a-time or all-at- once? word-based or character-based. In Proceedings of EMNLP, pages 277-284.
-
(2004)
Proceedings of EMNLP
, pp. 277-284
-
-
Ng, H.T.1
Low, J.K.2
-
10
-
-
85116342676
-
Chinese segmentation and new word detection using conditional random fields
-
Fuchun Peng, Fangfang Feng and Andrew McCallum, 2004. Chinese segmentation and new word detection using conditional random fields. In Proceedings of COLING, pages 562-568.
-
(2004)
Proceedings of COLING
, pp. 562-568
-
-
Peng, F.1
Feng, F.2
McCallum, A.3
-
13
-
-
42649125186
-
Competitive generative models with structure learning for NLP classification tasks
-
Sydney, Australia
-
Kristina Toutanova, 2006. Competitive generative models with structure learning for NLP classifi-cation tasks. In Proceedings of EMNLP, pages 576-584, Sydney, Australia.
-
(2006)
Proceedings of EMNLP
, pp. 576-584
-
-
Toutanova, K.1
-
14
-
-
85093043295
-
A conditional random field word segmenter for sighan bakeoff 2005
-
Huihsin Tseng, Pichuan Chang, Galen Andrew, Daniel Jurafsky and Christopher Manning, 2005. A Conditional Random Field Word Segmenter for Sighan Bakeoff 2005. In Proceedings of the Fourth SIGHAN Workshop on Chinese Language Processing, pages 168-171.
-
(2005)
Proceedings of the Fourth SIGHAN Workshop on Chinese Language Processing
, pp. 168-171
-
-
Tseng, H.1
Chang, P.2
Andrew, G.3
Jurafsky, D.4
Manning, C.5
-
15
-
-
80053403497
-
Which is more suitable for Chinese word segmentation, the generative model or the discrimi-native one?
-
Hong Kong, China
-
Kun Wang, Chengqing Zong and Keh-Yih Su, 2009. Which is more suitable for Chinese word seg-mentation, the generative model or the discriminative one? In Proceedings of PACLIC, pages 827-834, Hong Kong, China.
-
(2009)
Proceedings of PACLIC
, pp. 827-834
-
-
Wang, K.1
Zong, C.2
Su, K.-Y.3
-
16
-
-
55549127511
-
Minimum tag error for discriminative training of conditional random fields
-
Ying Xiong, Jie Zhu, Hao Huang and Haihua Xu, 2009. Minimum tag error for discriminative training of conditional random fields. Information Sciences, 179 (1-2). pages 169-179.
-
(2009)
Information Sciences
, vol.179
, Issue.1-2
, pp. 169-179
-
-
Xiong, Y.1
Zhu, J.2
Huang, H.3
Xu, H.4
-
19
-
-
57849088075
-
Subword-based tagging for confidence-dependent chinese word segmentation
-
Sydney, Australia
-
Ruiqiang Zhang, Genichiro Kikui and Eiichiro Sumita, 2006. Subword-based Tagging for Con-fidence-dependent Chinese Word Segmentation. In Proceedings of the COLING/ACL, pages 961968, Sydney, Australia.
-
(2006)
Proceedings of the COLING/ACL
, pp. 961968
-
-
Zhang, R.1
Kikui, G.2
Sumita, E.3
-
20
-
-
84921700653
-
Interpreting BLEU/NIST scores: How much improvement do we need to have a better system
-
Ying Zhang, Stephan Vogel and Alex Waibel, 2004. Interpreting BLEU/NIST scores: How much im-provement do we need to have a better system. In Proceedings of LREC, pages 2051-2054.
-
(2004)
Proceedings of LREC
, pp. 2051-2054
-
-
Zhang, Y.1
Vogel, S.2
Waibel, A.3
-
21
-
-
84860530065
-
Chinese segmentation with a word-based perceptron algorithm
-
Prague, Czech Republic
-
Yue Zhang and Stephen Clark, 2007. Chinese Segmentation with a Word-Based Perceptron Algo-rithm. In Proceedings of ACL, pages 840-847, Prague, Czech Republic.
-
(2007)
Proceedings of ACL
, pp. 840-847
-
-
Zhang, Y.1
Clark, S.2
|