메뉴 건너뛰기




Volumn 74, Issue 5, 2014, Pages 733-758

Using Structural Equation Modeling to Assess Functional Connectivity in the Brain: Power and Sample Size Considerations

Author keywords

brain connectivity; Monte Carlo simulation; power; RMSEA; structural equation modeling (SEM)

Indexed keywords


EID: 84906872045     PISSN: 00131644     EISSN: 15523888     Source Type: Journal    
DOI: 10.1177/0013164414525397     Document Type: Article
Times cited : (198)

References (65)
  • 1
    • 84973076636 scopus 로고
    • Tests of significance in factor analysis
    • Bartlett M. S.Tests of significance in factor analysis.British Journal of Psychology. 1950;3:77-85.
    • (1950) British Journal of Psychology , vol.3 , pp. 77-85
    • Bartlett, M.S.1
  • 3
    • 0030496688 scopus 로고    scopus 로고
    • An alternative two stage least squares (2SLS) estimator for latent variable equations
    • Bollen K. A.An alternative two stage least squares (2SLS) estimator for latent variable equations.Psychometrika. 1996;61:109-121.
    • (1996) Psychometrika , vol.61 , pp. 109-121
    • Bollen, K.A.1
  • 4
    • 1042263961 scopus 로고    scopus 로고
    • Autoregressive latent trajectory (ALT) models: A synthesis of two traditions
    • Bollen K. A.,Curran P. J.Autoregressive latent trajectory (ALT) models: A synthesis of two traditions.Sociological Methods & Research. 2004;32:336-383.
    • (2004) Sociological Methods & Research , vol.32 , pp. 336-383
    • Bollen, K.A.1    Curran, P.J.2
  • 6
    • 2442604664 scopus 로고    scopus 로고
    • Cudeck R.du Toit S.Sorbom D., ed.;, Lincolnwood, IL: Scientific Software International
    • Breivik E.,Olsson U.Structural equation modeling: Present and future. Cudeck R.du Toit S.Sorbom D., ed. Lincolnwood, IL: Scientific Software International; 2001:169-194.
    • (2001) Structural Equation Modeling: Present and Future , pp. 169-194
    • Breivik, E.1    Olsson, U.2
  • 9
    • 79851496916 scopus 로고    scopus 로고
    • Evaluating goodness-of-fit indexes for testing measurement invariance
    • Cheung G. W.,Rensvold R. B.Evaluating goodness-of-fit indexes for testing measurement invariance.Structural Equation Modeling. 2002;9:233-255.
    • (2002) Structural Equation Modeling , vol.9 , pp. 233-255
    • Cheung, G.W.1    Rensvold, R.B.2
  • 11
    • 84875260727 scopus 로고    scopus 로고
    • Robust regression estimates in the prediction of latent variables in structural equation models
    • Cirillo M. A.,Barroso L. P.Robust regression estimates in the prediction of latent variables in structural equation models.Journal of Modern Applied Statistical Methods. 2012;11:42-53.
    • (2012) Journal of Modern Applied Statistical Methods , vol.11 , pp. 42-53
    • Cirillo, M.A.1    Barroso, L.P.2
  • 12
    • 0004361563 scopus 로고    scopus 로고
    • Collins L. M.Sayer A. G., ed.;, Washington, DC: American Psychological Association
    • Curran P. J.,Bollen K. A.New methods for the analysis of change. Collins L. M.Sayer A. G., ed. Washington, DC: American Psychological Association; 2001:105-136.
    • (2001) New Methods for the Analysis of Change , pp. 105-136
    • Curran, P.J.1    Bollen, K.A.2
  • 14
    • 0036321402 scopus 로고    scopus 로고
    • The noncentral chi-square distribution in misspecified structural equation models: Finite sample results from a Monte Carlo simulation
    • Curran P. J.,Bollen K. A.,Paxton P.,Kirby J.,Chen F.The noncentral chi-square distribution in misspecified structural equation models: Finite sample results from a Monte Carlo simulation.Multivariate Behavioral Research. 2002;37:1-36.
    • (2002) Multivariate Behavioral Research , vol.37 , pp. 1-36
    • Curran, P.J.1    Bollen, K.A.2    Paxton, P.3    Kirby, J.4    Chen, F.5
  • 15
    • 0032769093 scopus 로고    scopus 로고
    • Cortical surface-based analysis. I. Segmentation and surface reconstruction
    • Dale A. M.,Fischl B.,Sereno M. I.Cortical surface-based analysis. I. Segmentation and surface reconstruction.NeuroImage. 1999;9:179-194.
    • (1999) NeuroImage , vol.9 , pp. 179-194
    • Dale, A.M.1    Fischl, B.2    Sereno, M.I.3
  • 16
    • 61449205093 scopus 로고    scopus 로고
    • Estimating statistical power with incomplete data
    • Davey A.,Salva J.Estimating statistical power with incomplete data.Organizational Research Methods. 2009;12:320-346.
    • (2009) Organizational Research Methods , vol.12 , pp. 320-346
    • Davey, A.1    Salva, J.2
  • 17
    • 61449165861 scopus 로고    scopus 로고
    • Using Δgoodness-of-fit indexes in assessing mean structure invariance
    • Fan X.,Sivo S. A.Using Δgoodness-of-fit indexes in assessing mean structure invariance.Structural Equation Modeling. 2009;16:54-69.
    • (2009) Structural Equation Modeling , vol.16 , pp. 54-69
    • Fan, X.1    Sivo, S.A.2
  • 18
    • 22144444619 scopus 로고    scopus 로고
    • Effects of sample size, estimation method, and model specification on structural equation modeling fit indexes
    • Fan X.,Thompson B.,Wang L.Effects of sample size, estimation method, and model specification on structural equation modeling fit indexes.Structural Equation Modeling. 1999;6:56-83.
    • (1999) Structural Equation Modeling , vol.6 , pp. 56-83
    • Fan, X.1    Thompson, B.2    Wang, L.3
  • 19
    • 33745683380 scopus 로고    scopus 로고
    • Measurement model quality, sample size, and solution propriety in confirmatory factor models
    • Gagne P.,Hancock G.Measurement model quality, sample size, and solution propriety in confirmatory factor models.Multivariate Behavioral Research. 2006;41:65-83.
    • (2006) Multivariate Behavioral Research , vol.41 , pp. 65-83
    • Gagne, P.1    Hancock, G.2
  • 20
  • 21
    • 0035537305 scopus 로고    scopus 로고
    • Power and sample sizes for the root mean square error of approximation test of not close fit in structural equation modeling
    • Hancock G. R.,Freeman M. J.Power and sample sizes for the root mean square error of approximation test of not close fit in structural equation modeling.Educational and Psychological Measurement. 2001;61:741-758.
    • (2001) Educational and Psychological Measurement , vol.61 , pp. 741-758
    • Hancock, G.R.1    Freeman, M.J.2
  • 23
    • 61449163071 scopus 로고    scopus 로고
    • Small-sample robust estimators of noncentrality-based and incremental model fit
    • Herzog W.,Boomsma A.Small-sample robust estimators of noncentrality-based and incremental model fit.Structural Equation Modeling. 2009;16:1-27.
    • (2009) Structural Equation Modeling , vol.16 , pp. 1-27
    • Herzog, W.1    Boomsma, A.2
  • 24
    • 34548066774 scopus 로고    scopus 로고
    • The model-size effect on traditional and modified tests of covariance structures
    • Herzog W.,Boomsma A.,Reinecke S.The model-size effect on traditional and modified tests of covariance structures.Structural Equation Modeling. 2007;14:361-390.
    • (2007) Structural Equation Modeling , vol.14 , pp. 361-390
    • Herzog, W.1    Boomsma, A.2    Reinecke, S.3
  • 25
    • 67650706330 scopus 로고    scopus 로고
    • Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives
    • Hu L. T.,Bentler P. M.Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives.Structural Equation Modeling. 1999;6:1-55.
    • (1999) Structural Equation Modeling , vol.6 , pp. 1-55
    • Hu, L.T.1    Bentler, P.M.2
  • 26
    • 75349090894 scopus 로고    scopus 로고
    • Structural equation modeling: Fit indices, sample size, and advanced topics
    • Iacobucci D.Structural equation modeling: Fit indices, sample size, and advanced topics.Journal of Consumer Psychology. 2010;20:90-98.
    • (2010) Journal of Consumer Psychology , vol.20 , pp. 90-98
    • Iacobucci, D.1
  • 27
    • 84874390594 scopus 로고    scopus 로고
    • Structural equation modeling with small sample sizes using two-stage least-squares estimation
    • Jung S.Structural equation modeling with small sample sizes using two-stage least-squares estimation.Behavior Research Methods. 2013;45:75-81.
    • (2013) Behavior Research Methods , vol.45 , pp. 75-81
    • Jung, S.1
  • 28
    • 0043109420 scopus 로고    scopus 로고
    • Sample size for multiple regression: Obtaining regression coefficients that are accurate, not simply significant
    • Kelley K.,Maxwell S. E.Sample size for multiple regression: Obtaining regression coefficients that are accurate, not simply significant.Psychological Methods. 2003;8:305-321.
    • (2003) Psychological Methods , vol.8 , pp. 305-321
    • Kelley, K.1    Maxwell, S.E.2
  • 29
    • 33947414695 scopus 로고    scopus 로고
    • Effect of the number of variables on measures of fit in structural equation modeling
    • Kenny D. A.,McCoach D. B.Effect of the number of variables on measures of fit in structural equation modeling.Structural Equation Modeling. 2003;10:333-351.
    • (2003) Structural Equation Modeling , vol.10 , pp. 333-351
    • Kenny, D.A.1    McCoach, D.B.2
  • 30
    • 84864824631 scopus 로고    scopus 로고
    • Testing measurement invariance using MIMIC: Likelihood ratio test with a critical value adjustment
    • Kim E. S.,Yoon M.,Lee T.Testing measurement invariance using MIMIC: Likelihood ratio test with a critical value adjustment.Educational and Psychological Measurement. 2012;72:469-492.
    • (2012) Educational and Psychological Measurement , vol.72 , pp. 469-492
    • Kim, E.S.1    Yoon, M.2    Lee, T.3
  • 31
    • 33846898773 scopus 로고    scopus 로고
    • Unified structural equation modeling approach for the analysis of multisubject, multivariate functional MRI data
    • Kim J.,Zhu W.,Chang L.,Bentler P. M.,Ernst T.Unified structural equation modeling approach for the analysis of multisubject, multivariate functional MRI data.Human Brain Mapping. 2007;28:85-93.
    • (2007) Human Brain Mapping , vol.28 , pp. 85-93
    • Kim, J.1    Zhu, W.2    Chang, L.3    Bentler, P.M.4    Ernst, T.5
  • 32
    • 84873648123 scopus 로고    scopus 로고
    • Cortical signatures of dyslexia and remediation: An intrinsic functional connectivity approach
    • Koyama M.,Martino A.,Kelly C.,Jutagir D.,Sunshine J.,Schwartz S.,Milham M.Cortical signatures of dyslexia and remediation: An intrinsic functional connectivity approach.PLoS One. 2013;8 (2): e55454.
    • (2013) PLoS One , vol.8 , Issue.2
    • Koyama, M.1    Martino, A.2    Kelly, C.3    Jutagir, D.4    Sunshine, J.5    Schwartz, S.6    Milham, M.7
  • 34
    • 0013118140 scopus 로고    scopus 로고
    • Power analysis and determination of sample size for covariance structure modeling
    • MacCallum R. C.,Browne M. W.,Sugawara H. M.Power analysis and determination of sample size for covariance structure modeling.Psychological Methods. 1996;1:130-149.
    • (1996) Psychological Methods , vol.1 , pp. 130-149
    • MacCallum, R.C.1    Browne, M.W.2    Sugawara, H.M.3
  • 35
    • 0031510495 scopus 로고    scopus 로고
    • Power analysis in covariance structure modeling using GFI and AGFI
    • MacCallum R. C.,Hong S.Power analysis in covariance structure modeling using GFI and AGFI.Multivariate Behavioral Research. 1997;32:193-210.
    • (1997) Multivariate Behavioral Research , vol.32 , pp. 193-210
    • MacCallum, R.C.1    Hong, S.2
  • 36
    • 75149145898 scopus 로고    scopus 로고
    • The issue of isopower in power analysis for tests of structural equation models
    • MacCallum R. C.,Lee T.,Browne M. W.The issue of isopower in power analysis for tests of structural equation models.Structural Equation Modeling. 2010;17:23-41.
    • (2010) Structural Equation Modeling , vol.17 , pp. 23-41
    • MacCallum, R.C.1    Lee, T.2    Browne, M.W.3
  • 37
    • 0348249407 scopus 로고
    • Structural equation modeling for scientific research
    • Marcoulides G. A.Structural equation modeling for scientific research.Journal of Business and Society. 1989;2:130-138.
    • (1989) Journal of Business and Society , vol.2 , pp. 130-138
    • Marcoulides, G.A.1
  • 38
    • 0025043759 scopus 로고
    • Evaluation of confirmatory factor analytic and structural equation models using goodness-of-fit indices
    • Marcoulides G. A.Evaluation of confirmatory factor analytic and structural equation models using goodness-of-fit indices.Psychological Reports. 1990;67:669-670.
    • (1990) Psychological Reports , vol.67 , pp. 669-670
    • Marcoulides, G.A.1
  • 40
    • 3142717451 scopus 로고
    • Goodness of fit indices in confirmatory factor analysis
    • Marsh H.,Balla J.,McDonald R.Goodness of fit indices in confirmatory factor analysis.Psychological Bulletin. 1988;103:391-410.
    • (1988) Psychological Bulletin , vol.103 , pp. 391-410
    • Marsh, H.1    Balla, J.2    McDonald, R.3
  • 41
    • 0032221781 scopus 로고    scopus 로고
    • Is more ever too much? The number of indicators per factor in confirmatory factor analysis
    • Marsh H.,Hau K.-T.,Balla J. R.,Grayson D.Is more ever too much? The number of indicators per factor in confirmatory factor analysis.Multivariate Behavioral Research. 1998;33:181-220.
    • (1998) Multivariate Behavioral Research , vol.33 , pp. 181-220
    • Marsh, H.1    Hau, K.-T.2    Balla, J.R.3    Grayson, D.4
  • 42
    • 0346899234 scopus 로고    scopus 로고
    • Statistical power and structural equation models in business research
    • McQuitty S.Statistical power and structural equation models in business research.Journal of Business Research. 2004;57:175-183.
    • (2004) Journal of Business Research , vol.57 , pp. 175-183
    • McQuitty, S.1
  • 43
    • 84906869011 scopus 로고    scopus 로고
    • Paper presented at the annual Academy of Management Conference; Atlanta, GA
    • Meade A. W.,Johnson E. C.,Braddy P. W. Paper presented at the annual Academy of Management Conference; 2006Atlanta, GA; 2006.
    • (2006)
    • Meade, A.W.1    Johnson, E.C.2    Braddy, P.W.3
  • 44
    • 0345040656 scopus 로고    scopus 로고
    • How to use a Monte Carlo study to decide on sample size and determine power
    • Muthén L. K.,Muthén B. O.How to use a Monte Carlo study to decide on sample size and determine power.Structural Equation Modeling. 2002;4:599-620.
    • (2002) Structural Equation Modeling , vol.4 , pp. 599-620
    • Muthén, L.K.1    Muthén, B.O.2
  • 46
    • 0001488412 scopus 로고    scopus 로고
    • The performance of ML, GLS, and WLS estimation in structural equation modeling under conditions of misspecification and nonnormality
    • Olsson U. H.,Foss T.,Troye S. V.,Howell R. D.The performance of ML, GLS, and WLS estimation in structural equation modeling under conditions of misspecification and nonnormality.Structural Equation Modeling. 2000;7:557-595.
    • (2000) Structural Equation Modeling , vol.7 , pp. 557-595
    • Olsson, U.H.1    Foss, T.2    Troye, S.V.3    Howell, R.D.4
  • 48
    • 61449128336 scopus 로고    scopus 로고
    • Modeling dynamic functional neuroimaging data using structural equation modeling
    • Price L. R.,Laird A. R.,Fox P. T.,Ingham R. J.Modeling dynamic functional neuroimaging data using structural equation modeling.Structural Equation Modeling. 2009;16:147-162.
    • (2009) Structural Equation Modeling , vol.16 , pp. 147-162
    • Price, L.R.1    Laird, A.R.2    Fox, P.T.3    Ingham, R.J.4
  • 49
    • 12844256092 scopus 로고    scopus 로고
    • On the large sample bias, variance, and mean squared error of the conventional noncentrality parameter estimator of covariance structure models
    • Raykov T.On the large sample bias, variance, and mean squared error of the conventional noncentrality parameter estimator of covariance structure models.Structural Equation Modeling. 2000;7:431-441.
    • (2000) Structural Equation Modeling , vol.7 , pp. 431-441
    • Raykov, T.1
  • 50
    • 78649796077 scopus 로고    scopus 로고
    • Multivariate effect size estimation: confidence interval construction via latent modeling
    • Raykov T.,Marcoulides G. A.Multivariate effect size estimation: confidence interval construction via latent modeling.Journal of Educational and Behavioral Statistics. 2010;35:407-421.
    • (2010) Journal of Educational and Behavioral Statistics , vol.35 , pp. 407-421
    • Raykov, T.1    Marcoulides, G.A.2
  • 51
    • 84883168860 scopus 로고    scopus 로고
    • Studying differential item functioning via latent variable modeling: A note on a multiple-testing procedure
    • Raykov T.,Marcoulides G. A.,Lee C. L.,Chang C.Studying differential item functioning via latent variable modeling: A note on a multiple-testing procedure.Educational and Psychological Measurement. 2013;73:898-908.
    • (2013) Educational and Psychological Measurement , vol.73 , pp. 898-908
    • Raykov, T.1    Marcoulides, G.A.2    Lee, C.L.3    Chang, C.4
  • 52
    • 39149143279 scopus 로고
    • Calculating degrees of freedom for a structural equation model
    • Rigdon E. E.Calculating degrees of freedom for a structural equation model.Structural Equation Modeling. 1994;1:274-278.
    • (1994) Structural Equation Modeling , vol.1 , pp. 274-278
    • Rigdon, E.E.1
  • 53
    • 14244259417 scopus 로고    scopus 로고
    • Mapping directed influence over the brain using granger causality mapping
    • Roebroeck A.,Formisano E.,Goebel F.Mapping directed influence over the brain using granger causality mapping.NeuroImage. 2005;25:230-242.
    • (2005) NeuroImage , vol.25 , pp. 230-242
    • Roebroeck, A.1    Formisano, E.2    Goebel, F.3
  • 54
    • 0002855772 scopus 로고
    • Satisfying a simplex structure is simpler than it should be
    • Rogosa D.,Willett J.Satisfying a simplex structure is simpler than it should be.Journal of Educational Statistics. 1985;10:99-107.
    • (1985) Journal of Educational Statistics , vol.10 , pp. 99-107
    • Rogosa, D.1    Willett, J.2
  • 55
    • 50949099463 scopus 로고    scopus 로고
    • Analysis of RT distributions in the remember-know paradigm
    • Rottelo C.,Zeng M.Analysis of RT distributions in the remember-know paradigm.Psychonomic Bulletin & Review. 2008;15:825-832.
    • (2008) Psychonomic Bulletin & Review , vol.15 , pp. 825-832
    • Rottelo, C.1    Zeng, M.2
  • 56
    • 0002813537 scopus 로고
    • Power of the likelihood ratio test in covariance structure analysis
    • Satorra A.,Saris W. E.Power of the likelihood ratio test in covariance structure analysis.Psychometrika. 1985;50:83-90.
    • (1985) Psychometrika , vol.50 , pp. 83-90
    • Satorra, A.1    Saris, W.E.2
  • 57
    • 84876464130 scopus 로고    scopus 로고
    • Time-constrained functional connectivity analysis of cortical networks underlying phonological decoding in typically developing school-aged children: A magnetoencephalography study
    • Simos P. G.,Rezaie R.,Fletcher J. M.,Papanicolaou A. C.Time-constrained functional connectivity analysis of cortical networks underlying phonological decoding in typically developing school-aged children: A magnetoencephalography study.Brain & Language. 2013;125:156-164.
    • (2013) Brain & Language , vol.125 , pp. 156-164
    • Simos, P.G.1    Rezaie, R.2    Fletcher, J.M.3    Papanicolaou, A.C.4
  • 58
    • 84948889709 scopus 로고
    • Structural model evaluation and modification: An interval estimation approach
    • Steiger J. H.Structural model evaluation and modification: An interval estimation approach.Multivariate Behavioral Research. 1990;25:173-180.
    • (1990) Multivariate Behavioral Research , vol.25 , pp. 173-180
    • Steiger, J.H.1
  • 59
    • 84906869002 scopus 로고
    • Paper presented at the annual meeting of the Psychometric Society; Iowa City, IA
    • Steiger J. H.,Lind J. M. Paper presented at the annual meeting of the Psychometric Society; 1980Iowa City, IA; 1980.
    • (1980)
    • Steiger, J.H.1    Lind, J.M.2
  • 60
    • 0038525498 scopus 로고
    • (Unpublished doctoral dissertation). Department of Statistics, University of Adelaide, Australia
    • SwainA. J. (1975). Analysis of parametric structures for variance matrices (Unpublished doctoral dissertation). Department of Statistics, University of Adelaide, Australia.
    • (1975) Analysis of parametric structures for variance matrices
    • Swain, A.J.1
  • 61
    • 0031531947 scopus 로고    scopus 로고
    • Fitting ARMA time series by structural equation models
    • van Buuren S.Fitting ARMA time series by structural equation models.Psychometrika. 1997;62:215-236.
    • (1997) Psychometrika , vol.62 , pp. 215-236
    • van Buuren, S.1
  • 62
    • 84875277178 scopus 로고    scopus 로고
    • The impact of violating factor scaling method assumptions on latent mean difference testing in structured means models
    • Wang D.,Whittaker T.,Beretvas N.The impact of violating factor scaling method assumptions on latent mean difference testing in structured means models.Journal of Modern Applied Statistical Methods. 2012;11:24-41.
    • (2012) Journal of Modern Applied Statistical Methods , vol.11 , pp. 24-41
    • Wang, D.1    Whittaker, T.2    Beretvas, N.3
  • 63
    • 84886428907 scopus 로고    scopus 로고
    • Sample size requirements for structural equation models: An evaluation of power, bias, and solution propriety
    • Wolf E.,Harrington K. M.,Clark S. L.,Miller M. W.Sample size requirements for structural equation models: An evaluation of power, bias, and solution propriety.Educational and Psychological Measurement. 2013;73:913-934.
    • (2013) Educational and Psychological Measurement , vol.73 , pp. 913-934
    • Wolf, E.1    Harrington, K.M.2    Clark, S.L.3    Miller, M.W.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.