-
2
-
-
84937294360
-
Structural equation models that are nonlinear in latent variables: A least squares estimator
-
Bollen, K. A. (1995). Structural equation models that are nonlinear in latent variables: A least squares estimator. Sociological Methodology, 25, 223-251.
-
(1995)
Sociological Methodology
, vol.25
, pp. 223-251
-
-
Bollen, K.A.1
-
3
-
-
0030496688
-
An alternative two stage least squares (2SLS) estimator for latent variable equations
-
Bollen, K. A. (1996). An alternative two stage least squares (2SLS) estimator for latent variable equations. Psychometrika, 61, 109-121.
-
(1996)
Psychometrika
, vol.61
, pp. 109-121
-
-
Bollen, K.A.1
-
4
-
-
2442451389
-
Automating the selection of model-implied instrumental variables
-
Bollen, K. A., & Bauer, D. J. (2004). Automating the selection of model-implied instrumental variables. Sociological Methods and Research, 32, 425-452.
-
(2004)
Sociological Methods and Research
, vol.32
, pp. 425-452
-
-
Bollen, K.A.1
Bauer, D.J.2
-
5
-
-
34547233564
-
Latent variable models under misspecification. Two-stage least squares (2SLS) and maximum likelihood (ML) estimators
-
Bollen, K. A., Kirby, J. B., Curran, P. J., Paxton, P., & Chen, F. (2007). Latent variable models under misspecification. Two-stage least squares (2SLS) and maximum likelihood (ML) estimators. Sociological Methods and Research, 36, 48-86.
-
(2007)
Sociological Methods and Research
, vol.36
, pp. 48-86
-
-
Bollen, K.A.1
Kirby, J.B.2
Curran, P.J.3
Paxton, P.4
Chen, F.5
-
6
-
-
0011703342
-
The robustness of LISREL modeling revisited
-
R. Cudeck, S. ToitDu, and D. Sorbom (Eds.), Chicago, IL: SSI Scientific Software
-
Boomsma, A., & Hoogland, J. J. (2001). The robustness of LISREL modeling revisited. In R. Cudeck, S. Du Toit, & D. Sorbom (Eds.), Structural equation modeling: Present and future (pp. 139-168). Chicago, IL: SSI Scientific Software.
-
(2001)
Structural Equation Modeling: Present and Future
, pp. 139-168
-
-
Boomsma, A.1
Hoogland, J.J.2
-
7
-
-
84871768280
-
Problems with instrumental variables estimation when the correlation between the instruments and the endogenous explanatory variable is weak
-
Bound, J., Jaeger, D. A., & Baker, R. M. (1995). Problems with instrumental variables estimation when the correlation between the instruments and the endogenous explanatory variable is weak. Journal of the American Statistical Association, 90, 443-450.
-
(1995)
Journal of the American Statistical Association
, vol.90
, pp. 443-450
-
-
Bound, J.1
Jaeger, D.A.2
Baker, R.M.3
-
8
-
-
77953141550
-
Using principal components and factor analysis in animal behaviour research: Caveats and guidelines
-
Budaev, S. V. (2010). Using principal components and factor analysis in animal behaviour research: Caveats and guidelines. Ethology, 116, 472-480.
-
(2010)
Ethology
, vol.116
, pp. 472-480
-
-
Budaev, S.V.1
-
9
-
-
0000557496
-
The bias of instrumental variable estimators
-
Buse, A. (1992). The bias of instrumental variable estimators. Econometrica, 60, 173-180.
-
(1992)
Econometrica
, vol.60
, pp. 173-180
-
-
Buse, A.1
-
10
-
-
54949152457
-
Challenges in nonlinear structural equation modeling
-
Dimitruk, P., Schermelleh-Engel, K., Kelava, A., & Moosbrugger, H. (2007). Challenges in nonlinear structural equation modeling. Methodology, 3, 100-114.
-
(2007)
Methodology
, vol.3
, pp. 100-114
-
-
Dimitruk, P.1
Schermelleh-Engel, K.2
Kelava, A.3
Moosbrugger, H.4
-
13
-
-
27144544190
-
-
Berlin, Germany: Springer
-
Groß, J. (2003). Linear regression. Berlin, Germany: Springer.
-
(2003)
Linear Regression
-
-
Groß, J.1
-
14
-
-
0003684449
-
-
New York, NY: Springer
-
Hastie, T., Tibshirani, R., & Friedman, J. (2001). The elements of statistical learning: Data mining, inference, and prediction. New York, NY: Springer.
-
(2001)
The Elements of Statistical Learning: Data Mining, Inference, and Prediction
-
-
Hastie, T.1
Tibshirani, R.2
Friedman, J.3
-
15
-
-
33846796346
-
Testing! Testing! One, two three: Testing the theory in structural equation models
-
Hayduk, L., Cummings, G. G., Boadu, K., Pazderka-Robinson, H., & Boulianne, S. (2007). Testing! testing! one, two three: Testing the theory in structural equation models. Personality and Individual Differences, 42, 841-850.
-
(2007)
Personality and Individual Differences
, vol.42
, pp. 841-850
-
-
Hayduk, L.1
Cummings, G.G.2
Boadu, K.3
Pazderka-Robinson, H.4
Boulianne, S.5
-
16
-
-
84942484786
-
Ridge regression: Biased estimation for nonorthogonal problems
-
Hoerl, A. E., & Kennard, R. W. (1970). Ridge regression: Biased estimation for nonorthogonal problems. Technometrics, 12, 55-67.
-
(1970)
Technometrics
, vol.12
, pp. 55-67
-
-
Hoerl, A.E.1
Kennard, R.W.2
-
18
-
-
0002548788
-
A general method for estimating a linear structural equation system
-
A. S. Goldberger and O. D. Duncan (Eds.), New York, NY: Academic Press
-
Jöreskog, K. G. (1973). A general method for estimating a linear structural equation system. In A. S. Goldberger & O. D. Duncan (Eds.), Structural equation models in the social sciences (pp. 85-112). New York, NY: Academic Press.
-
(1973)
Structural Equation Models in the Social Sciences
, pp. 85-112
-
-
Jöreskog, K.G.1
-
19
-
-
80052840383
-
Exploratory factor analysis for small samples
-
Jung, S., & Lee, S. (2011). Exploratory factor analysis for small samples. Behavior Research Methods, 43, 701-709.
-
(2011)
Behavior Research Methods
, vol.43
, pp. 701-709
-
-
Jung, S.1
Lee, S.2
-
24
-
-
25144494760
-
Prediction error estimation: A comparison of resampling methods
-
Molinaro, A. M., Simon, R., & Pfeiffer, R. M. (2005). Prediction error estimation: A comparison of resampling methods. Bioinformatics, 21, 3301-3307.
-
(2005)
Bioinformatics
, vol.21
, pp. 3301-3307
-
-
Molinaro, A.M.1
Simon, R.2
Pfeiffer, R.M.3
-
25
-
-
0004031293
-
-
New York, NY: McGraw-Hill
-
Mood, A. M., Graybill, F. A., & Boes, D. C. (1974). Introduction to the theory of statistics. New York, NY: McGraw-Hill.
-
(1974)
Introduction to the Theory of Statistics
-
-
Mood, A.M.1
Graybill, F.A.2
Boes, D.C.3
-
26
-
-
0037849794
-
Discriminating between measurement scales using non-nested tests and 2SLS: Monte Carlo evidence
-
Oczkowski, E. (2002). Discriminating between measurement scales using non-nested tests and 2SLS: Monte Carlo evidence. Structural Equation Modeling, 9, 103-125.
-
(2002)
Structural Equation Modeling
, vol.9
, pp. 103-125
-
-
Oczkowski, E.1
-
29
-
-
62949155025
-
Regularized partial and/or constrained redundancy analysis
-
Takane, Y., & Jung, S. (2008). Regularized partial and/or constrained redundancy analysis. Psychometrika, 73, 671-690.
-
(2008)
Psychometrika
, vol.73
, pp. 671-690
-
-
Takane, Y.1
Jung, S.2
-
30
-
-
79954628374
-
Regularized generalized canonical correlation analysis
-
Tenenhaus, A., & Tenenhaus, M. (2011). Regularized generalized canonical correlation analysis. Psychometrika, 76, 257-284.
-
(2011)
Psychometrika
, vol.76
, pp. 257-284
-
-
Tenenhaus, A.1
Tenenhaus, M.2
|