메뉴 건너뛰기




Volumn 4, Issue 1, 2014, Pages 1-14

Tweeting the terror: modelling the social media reaction to the Woolwich terrorist attack

Author keywords

Information flows; Information propagation; Information spreading; Opinion mining; Predictive models; Sentiment analysis; Social media; Social network analysis; Twitter

Indexed keywords

DATA MINING; INFORMATION DISSEMINATION; PRINCIPAL COMPONENT ANALYSIS; REGRESSION ANALYSIS; TERRORISM; WEBSITES;

EID: 84906264962     PISSN: 18695450     EISSN: 18695469     Source Type: Journal    
DOI: 10.1007/s13278-014-0206-4     Document Type: Article
Times cited : (208)

References (22)
  • 2
    • 84867378461 scopus 로고    scopus 로고
    • The pulse of news in social media: forecasting popularity
    • Bandari R, Asur S, Huberman BA (2012) The pulse of news in social media: forecasting popularity. CoRR. http://arxiv.org/abs/1202.0332
    • (2012) CoRR
    • Bandari, R.1    Asur, S.2    Huberman, B.A.3
  • 3
    • 84860589584 scopus 로고    scopus 로고
    • What makes online content viral?
    • Berger J, Milkman K (2012) What makes online content viral? J Mark Res 49(2):192–205
    • (2012) J Mark Res , vol.49 , Issue.2 , pp. 192-205
    • Berger, J.1    Milkman, K.2
  • 4
    • 84929656970 scopus 로고    scopus 로고
    • Detecting tension in online communities with computational Twitter analysis, Technol Forecast Social Change
    • Burnap P, Rana O, Avis N, Williams M, Housley W, Edwards A, Morgan J, S L (2013) Detecting tension in online communities with computational Twitter analysis. Technol Forecast Social Change. doi:10.1016/j.techfore.2013.04.013
    • (2013) S L
    • Burnap, P.1    Rana, O.2    Avis, N.3    Williams, M.4    Housley, W.5    Edwards, A.6    Morgan, J.7
  • 5
    • 0000336139 scopus 로고
    • Regression models and life tables
    • Cox D (1972) Regression models and life tables. J Roy Statist Soc B 34:187–220
    • (1972) J Roy Statist Soc B , vol.34 , pp. 187-220
    • Cox, D.1
  • 6
    • 79961218319 scopus 로고
    • Up and down with ecology––the ‘issue-attention cycle’
    • Downs A (1972) Up and down with ecology––the ‘issue-attention cycle’. Public Interest 28:28–50
    • (1972) Public Interest , vol.28 , pp. 28-50
    • Downs, A.1
  • 8
    • 84887422995 scopus 로고    scopus 로고
    • Information diffusion in online social networks: a survey
    • Guille A, Hacid H, Favre C, Zighed DA (2013) Information diffusion in online social networks: a survey. SIGMOD Rec 42(1):17–28. doi:10.1145/2503792.2503797
    • (2013) SIGMOD Rec , vol.42 , Issue.1 , pp. 17-28
    • Guille, A.1    Hacid, H.2    Favre, C.3    Zighed, D.A.4
  • 10
    • 84858264441 scopus 로고    scopus 로고
    • The revolutions were tweeted: information flows during the 2011 Tunisian and Egyptian revolutions
    • Lotan G, Graeff E, Ananny M, Gaffney D, Pearce I, Boyd D (2011) The revolutions were tweeted: information flows during the 2011 Tunisian and Egyptian revolutions. Int J Commun 5(Special Issue):1375–1405
    • (2011) Int J Commun , vol.5 , pp. 1375-1405
    • Lotan, G.1    Graeff, E.2    Ananny, M.3    Gaffney, D.4    Pearce, I.5    Boyd, D.6
  • 12
    • 84876053715 scopus 로고    scopus 로고
    • Reading the riots: what were the police doing on Twitter?
    • Procter R, Crump J, Karstedt S, Voss A, Cantijoch M (2013a) Reading the riots: what were the police doing on Twitter? Polic Soc 23(4):1–24. doi:10.1080/10439463.2013.780223
    • (2013) Polic Soc , vol.23 , Issue.4 , pp. 1-24
    • Procter, R.1    Crump, J.2    Karstedt, S.3    Voss, A.4    Cantijoch, M.5
  • 13
    • 84876022800 scopus 로고    scopus 로고
    • Reading the riots on Twitter: methodological innovation for the analysis of big data
    • Procter R, Vis F, Voss A (2013b) Reading the riots on Twitter: methodological innovation for the analysis of big data. Int J Soc Res Methodol 16(3):197–214. doi:10.1080/13645579.2013.774172
    • (2013) Int J Soc Res Methodol , vol.16 , Issue.3 , pp. 197-214
    • Procter, R.1    Vis, F.2    Voss, A.3
  • 17
    • 84858057957 scopus 로고    scopus 로고
    • What’s in a hashtag?: content based prediction of the spread of ideas in microblogging communities. Paper presented at the proceedings of the fifth ACM international conference on web search and data mining
    • Washington: USA
    • Tsur O, Rappoport A (2012) What’s in a hashtag?: content based prediction of the spread of ideas in microblogging communities. Paper presented at the proceedings of the fifth ACM international conference on web search and data mining, Seattle, Washington, USA
    • (2012) Seattle
    • Tsur, O.1    Rappoport, A.2
  • 21
    • 84995879438 scopus 로고    scopus 로고
    • A Bayesian approach for predicting the popularity of tweets
    • Zaman T, Fox E, Bradlow E (2013) A Bayesian approach for predicting the popularity of tweets. CoRR
    • (2013) CoRR
    • Zaman, T.1    Fox, E.2    Bradlow, E.3
  • 22
    • 85041442937 scopus 로고    scopus 로고
    • Zarrella D (2009) The science of retweets
    • Zarrella D (2009) The science of retweets


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.