메뉴 건너뛰기




Volumn 42, Issue 3, 2014, Pages 436-450

Bayesian sensitivity analyses for hidden sub-populations in weighted sampling

Author keywords

Bayesian inference; Hidden sub population; Markov chain Monte Carlo; Partial identification; Sensitivity analysis; Weighted sampling

Indexed keywords


EID: 84906233047     PISSN: 03195724     EISSN: 1708945X     Source Type: Journal    
DOI: 10.1002/cjs.11220     Document Type: Article
Times cited : (5)

References (21)
  • 4
    • 84906250651 scopus 로고    scopus 로고
    • Epidemiology, Saunders Elsevier, Philadelphia, PA.
    • Gordis, L. (2009). Epidemiology, Saunders Elsevier, Philadelphia, PA.
    • (2009)
    • Gordis, L.1
  • 5
    • 20144383829 scopus 로고    scopus 로고
    • Multiple-bias modelling for analysis of observational data
    • Greenland, S. (2005). Multiple-bias modelling for analysis of observational data. Journal of the Royal Statistical Society, Series A, 168(2), 267-306.
    • (2005) Journal of the Royal Statistical Society, Series A , vol.168 , Issue.2 , pp. 267-306
    • Greenland, S.1
  • 7
    • 15844429309 scopus 로고    scopus 로고
    • On model expansion, model contraction, identifiability and prior information: Two illustrative scenarios involving mismeasured variables
    • With comments and a rejoinder by the author.
    • Gustafson, P. (2005). On model expansion, model contraction, identifiability and prior information: Two illustrative scenarios involving mismeasured variables. Statistical Science, 20(2), 111-140. With comments and a rejoinder by the author.
    • (2005) Statistical Science , vol.20 , Issue.2 , pp. 111-140
    • Gustafson, P.1
  • 9
    • 84906050799 scopus 로고    scopus 로고
    • Assessing high-risk scenarios by full-range tail dependence copula
    • in press.
    • Hua, L. & Xia, M. (2014). Assessing high-risk scenarios by full-range tail dependence copula. North American Actuarial Journal, in press.
    • (2014) North American Actuarial Journal
    • Hua, L.1    Xia, M.2
  • 12
    • 2942567603 scopus 로고    scopus 로고
    • To model or not to model? competing modes of inference for finite population sampling
    • Little, R. J. (2004). To model or not to model? competing modes of inference for finite population sampling. Journal of the American Statistical Association, 99(466), 546-556.
    • (2004) Journal of the American Statistical Association , vol.99 , Issue.466 , pp. 546-556
    • Little, R.J.1
  • 13
    • 0006407254 scopus 로고    scopus 로고
    • WinBUGS-A Bayesian modelling framework: Concepts, structure, and extensibility
    • Lunn, D. J., Thomas, A., Best, N., & Spiegelhalter, D. (2000). WinBUGS-A Bayesian modelling framework: Concepts, structure, and extensibility. Statistics and Computing, 10, 325-337.
    • (2000) Statistics and Computing , vol.10 , pp. 325-337
    • Lunn, D.J.1    Thomas, A.2    Best, N.3    Spiegelhalter, D.4
  • 14
    • 84906257624 scopus 로고    scopus 로고
    • National Health Interview Survey
    • NCHS, Centers for Disease Control and Prevention, Hyattsville, MD.
    • NCHS (2009). National Health Interview Survey. National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention, Hyattsville, MD.
    • (2009) National Center for Health Statistics (NCHS)
  • 16
    • 84906242277 scopus 로고    scopus 로고
    • Epidemiology: An Introduction, Oxford University Press, New York.
    • Rothman, K. J. (2002). Epidemiology: An Introduction, Oxford University Press, New York.
    • (2002)
    • Rothman, K.J.1
  • 17
    • 0000135972 scopus 로고
    • The Bayesian bootstrap
    • Rubin, D. B. (1981). The Bayesian bootstrap. The Annals of Statistics, 9(1), 130-134.
    • (1981) The Annals of Statistics , vol.9 , Issue.1 , pp. 130-134
    • Rubin, D.B.1
  • 18
    • 79960996453 scopus 로고    scopus 로고
    • Fitting regression models with response-biased samples
    • Scott, A. J. & Wild, C. J. (2011). Fitting regression models with response-biased samples. Canadian Journal of Statistics, 39, 519-536.
    • (2011) Canadian Journal of Statistics , vol.39 , pp. 519-536
    • Scott, A.J.1    Wild, C.J.2
  • 19
    • 3843086509 scopus 로고    scopus 로고
    • Monte Carlo sensitivity analysis and Bayesian analysis of smoking as an unmeasured confounder in a study of silica and lung cancer
    • Steenland, K. & Greenland, S. (2004). Monte Carlo sensitivity analysis and Bayesian analysis of smoking as an unmeasured confounder in a study of silica and lung cancer. American Journal of Epidemiology, 160(4), 384-392.
    • (2004) American Journal of Epidemiology , vol.160 , Issue.4 , pp. 384-392
    • Steenland, K.1    Greenland, S.2
  • 20
    • 0010774685 scopus 로고
    • Consistency of maximum likelihood and Bayes estimates
    • Strasser, H. (1981). Consistency of maximum likelihood and Bayes estimates. The Annals of Statistics, 9(5), 1107-1133.
    • (1981) The Annals of Statistics , vol.9 , Issue.5 , pp. 1107-1133
    • Strasser, H.1
  • 21
    • 84865643428 scopus 로고    scopus 로고
    • A Bayesian method for estimating prevalence in the presence of a hidden sub-population
    • Xia, M. & Gustafson, P. (2012). A Bayesian method for estimating prevalence in the presence of a hidden sub-population. Statistics in Medicine, 31, 2386-2398.
    • (2012) Statistics in Medicine , vol.31 , pp. 2386-2398
    • Xia, M.1    Gustafson, P.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.