메뉴 건너뛰기




Volumn 73, Issue 10-12, 2010, Pages 1704-1717

Spectral clustering with eigenvector selection based on entropy ranking

Author keywords

Eigenvector selection; Entropy ranking; Pattern recognition; Spectral clustering

Indexed keywords

AFFINITY MATRIX; BENCHMARK DATASETS; BRODATZ TEXTURES; CLUSTERING PROBLEMS; CLUSTERING RESULTS; DATA SETS; EIGENVECTOR SELECTION; EIGENVECTORS; HANDWRITTEN DIGIT; LARGE-SCALE DATASETS; REAL PATTERNS; SELECTION BASED; SELECTION METHODS; SPECTRAL CLUSTERING;

EID: 77952586130     PISSN: 09252312     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.neucom.2009.12.029     Document Type: Article
Times cited : (70)

References (33)
  • 1
    • 0002334967 scopus 로고    scopus 로고
    • Spectral partitioning with multiple eigenvectors
    • Alpert C.J., Yao S. Spectral partitioning with multiple eigenvectors. Discrete Applied Mathematics 1999, 90(1-3):3-26.
    • (1999) Discrete Applied Mathematics , vol.90 , Issue.1-3 , pp. 3-26
    • Alpert, C.J.1    Yao, S.2
  • 2
    • 77952582580 scopus 로고    scopus 로고
    • UCI Machine Learning Repository [], Irvine, CA: University of California, School of Information and Computer Science.
    • A. Asuncion, D.J. Newman, UCI Machine Learning Repository [], Irvine, CA: University of California, School of Information and Computer Science, 2007. http://www.ics.uci.edu/~mlearn/MLRepository.html.
    • (2007)
    • Asuncion, A.1    Newman, D.J.2
  • 3
    • 33749317042 scopus 로고    scopus 로고
    • Learning spectral clustering, with application to speech separation
    • Bach F.R., Jordan M.I. Learning spectral clustering, with application to speech separation. Journal of Machine Learning 2006, 7:1963-2001.
    • (2006) Journal of Machine Learning , vol.7 , pp. 1963-2001
    • Bach F.R.Jordan, M.I.1
  • 5
    • 27144489164 scopus 로고    scopus 로고
    • A tutorial on support vector machines for pattern recognition
    • Burges C.J.C. A tutorial on support vector machines for pattern recognition. Data Mining and Knowledge Discovery 1998, 2(2):121-167.
    • (1998) Data Mining and Knowledge Discovery , vol.2 , Issue.2 , pp. 121-167
    • Burges, C.J.C.1
  • 6
    • 34548016117 scopus 로고    scopus 로고
    • Robust path-based spectral clustering
    • Chang H., Yeung Dit-Yan. Robust path-based spectral clustering. Pattern Recognition 2008, 41(1):191-203.
    • (2008) Pattern Recognition , vol.41 , Issue.1 , pp. 191-203
    • Chang, H.1    Yeung, D.-Y.2
  • 9
    • 84942747959 scopus 로고    scopus 로고
    • Feature selection for clustering, in: Proceedings of Fourth Pacific-Asia Conference on Knowledge Discovery and Data Mining.
    • M. Dash, H. Liu, Feature selection for clustering, in: Proceedings of Fourth Pacific-Asia Conference on Knowledge Discovery and Data Mining, 2000, pp. 110-121.
    • (2000) , pp. 110-121
    • Dash, M.1    Liu, H.2
  • 10
    • 78149289039 scopus 로고    scopus 로고
    • Feature selection for clustering-a filter solution, in: Proceedings of the 2002 IEEE International Conference on Data Mining.
    • M. Dash, K. Choi, P. Scheuermann, H. Liu, Feature selection for clustering-a filter solution, in: Proceedings of the 2002 IEEE International Conference on Data Mining, 2002, pp. 115-122.
    • (2002) , pp. 115-122
    • Dash, M.1    Choi, K.2    Scheuermann, P.3    Liu, H.4
  • 11
    • 78149301227 scopus 로고    scopus 로고
    • A min-max cut algorithm for graph partitioning and data clustering, in: Proceedings of the 1st IEEE International Conference on Data Mining.
    • C.H.Q. Ding, X. He, H. Zha, M. Gu, H. Simon, A min-max cut algorithm for graph partitioning and data clustering, in: Proceedings of the 1st IEEE International Conference on Data Mining, 2001, pp. 107-114.
    • (2001) , pp. 107-114
    • Ding, C.H.Q.1    He, X.2    Zha, H.3    Gu, M.4    Simon, H.5
  • 13
    • 0001859083 scopus 로고    scopus 로고
    • Initialization of iterative refinement clustering algorithms, in: Proceedings of the 4th International Conference on Knowledge Discovery & Data Mining.
    • U. Fayyad, C. Reina, P.S. Bradley, Initialization of iterative refinement clustering algorithms, in: Proceedings of the 4th International Conference on Knowledge Discovery & Data Mining, 1998, pp.194-198.
    • (1998) , pp. 194-198
    • Fayyad, U.1    Reina, C.2    Bradley, P.S.3
  • 16
    • 77952585365 scopus 로고    scopus 로고
    • Spectral relaxation models and structure analysis for k-way graph Clustering and bi-clustering, Pennsylvania State University, Technical report CSE-01-007.
    • M. Gu, H. Zha, C. Ding, X. He, H. Simon, J. Xia, Spectral relaxation models and structure analysis for k-way graph Clustering and bi-clustering, Pennsylvania State University, Technical report CSE-01-007, 2001.
    • (2001)
    • Gu, M.1    Zha, H.2    Ding, C.3    He, X.4    Simon, H.5    Xia, J.6
  • 17
    • 0000063845 scopus 로고
    • An improved spectral graph partitioning algorithm for mapping parallel computations
    • Hendrickson B., Leland R. An improved spectral graph partitioning algorithm for mapping parallel computations. SIAM Journal of Scientific Computing 1995, 16(2):452-469.
    • (1995) SIAM Journal of Scientific Computing , vol.16 , Issue.2 , pp. 452-469
    • Hendrickson, B.1    Leland, R.2
  • 18
    • 58149421595 scopus 로고
    • Analysis of a complex of statistical variables into principal components
    • Hotelling H. Analysis of a complex of statistical variables into principal components. Journal of Educational Psychology 1933, 24:417-441.
    • (1933) Journal of Educational Psychology , vol.24 , pp. 417-441
    • Hotelling, H.1
  • 20
    • 33748875128 scopus 로고    scopus 로고
    • Kernel principle component analysis in pixels clustering, in: Proceedings of the 2005 IEEE/WIC/ACM International Conference on Web Intelligence.
    • J. Li, D. Tao, W. Hu, X. Li, Kernel principle component analysis in pixels clustering, in: Proceedings of the 2005 IEEE/WIC/ACM International Conference on Web Intelligence, 2005, pp. 786-789.
    • (2005) , pp. 786-789
    • Li, J.1    Tao, D.2    Hu, W.3    Li, X.4
  • 22
    • 84899013108 scopus 로고    scopus 로고
    • On spectral clustering: analysis and an algorithm, in: Advances in Neural Information Processing Systems.
    • Y. Ng, M.I. Jordan, Y. Weiss, On spectral clustering: analysis and an algorithm, in: Advances in Neural Information Processing Systems, 2002, pp. 849-856.
    • (2002) , pp. 849-856
    • Ng Y.Jordan M.I.Weiss, Y.1
  • 23
    • 34247550080 scopus 로고    scopus 로고
    • Identifying neuronal assemblies with local and global connectivity with scale space spectral clustering
    • Oweiss K., Jin R., Suhail Y. Identifying neuronal assemblies with local and global connectivity with scale space spectral clustering. Neurocomputing 2007, 70(10-12):1728-1734.
    • (2007) Neurocomputing , vol.70 , Issue.10-12 , pp. 1728-1734
    • Oweiss, K.1    Jin, R.2    Suhail, Y.3
  • 24
    • 0028203106 scopus 로고
    • Convergence analysis of canonical genetic algorithms
    • Rudolph G. Convergence analysis of canonical genetic algorithms. IEEE Transactions on Neural Networks 1994, 5(1):96-101.
    • (1994) IEEE Transactions on Neural Networks , vol.5 , Issue.1 , pp. 96-101
    • Rudolph, G.1
  • 25
    • 0034704222 scopus 로고    scopus 로고
    • Nonlinear dimensionality reduction by locally linear embedding
    • Roweis S.T., Saul L.K. Nonlinear dimensionality reduction by locally linear embedding. Science 2000, 290:2323-2326.
    • (2000) Science , vol.290 , pp. 2323-2326
    • Roweis, S.T.1    Saul, L.K.2
  • 28
    • 0034704229 scopus 로고    scopus 로고
    • A global geometric framework for nonlinear dimensionality reduction
    • Tenenbaum J.B., de Silva V., Langford J.C. A global geometric framework for nonlinear dimensionality reduction. Science 2000, 290:2319-2323.
    • (2000) Science , vol.290 , pp. 2319-2323
    • Tenenbaum, J.B.1    de Silva, V.2    Langford, J.C.3
  • 29
    • 84864040410 scopus 로고    scopus 로고
    • A local learning approach for clustering, in: Advances in Neural Information Processing Systems.
    • M. Wu, B. Schölkopf, A local learning approach for clustering, in: Advances in Neural Information Processing Systems, 2007, pp. 1529-1536.
    • (2007) , pp. 1529-1536
    • Wu, M.1    Schölkopf, B.2
  • 30
    • 35448945640 scopus 로고    scopus 로고
    • Spectral clustering with eigenvector selection
    • Xiang T., Gong S.G. Spectral clustering with eigenvector selection. Pattern Recognition 2008, 41(3):1012-1029.
    • (2008) Pattern Recognition , vol.41 , Issue.3 , pp. 1012-1029
    • Xiang, T.1    Gong, S.G.2
  • 31
    • 84898995558 scopus 로고    scopus 로고
    • Self-tuning spectral clustering, in: Advances in Neural Information Processing Systems.
    • L. Zelnik-Manor, P. Perona, Self-tuning spectral clustering, in: Advances in Neural Information Processing Systems, 2005, pp. 1601-1608.
    • (2005) , pp. 1601-1608
    • Zelnik-Manor, L.1    Perona, P.2
  • 32
    • 56349119506 scopus 로고    scopus 로고
    • A unifying framework for spectral analysis based dimensionality reduction, in: Proceedings of the 2008 IEEE World Congress on Computational Intelligence.
    • T. Zhang, D. Tao, X. Li, T. Yang, A unifying framework for spectral analysis based dimensionality reduction, in: Proceedings of the 2008 IEEE World Congress on Computational Intelligence, 2008, pp. 1670-1677.
    • (2008) , pp. 1670-1677
    • Zhang, T.1    Tao, D.2    Li, X.3    Yang, T.4
  • 33
    • 77951956142 scopus 로고    scopus 로고
    • Object trajectory clustering via tensor analysis, in: Proceedings of the IEEE International Conference on Image Processing.
    • H. Zhou, D. Tao, Y. Yuan, X. Li, Object trajectory clustering via tensor analysis, in: Proceedings of the IEEE International Conference on Image Processing, 2009, pp. 7-11.
    • (2009) , pp. 7-11
    • Zhou, H.1    Tao, D.2    Yuan, Y.3    Li, X.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.