메뉴 건너뛰기




Volumn 39, Issue , 2014, Pages 1143-1154

Quantizing the deterministic nonlinearity in wind speed time series

Author keywords

ARMA; Empirical Mode Decomposition; Grey; Markov; Nonlinear analysis; Surrogate data; Wind speed

Indexed keywords

FORECASTING; NONLINEAR ANALYSIS; NONLINEAR SYSTEMS; SIGNAL PROCESSING; TIME SERIES;

EID: 84905814536     PISSN: 13640321     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.rser.2014.07.130     Document Type: Review
Times cited : (41)

References (81)
  • 4
    • 84905839309 scopus 로고    scopus 로고
    • Wind speed forecasting in the central California wind resource area
    • Burlingame, CA; March 23
    • McCarthy E. Wind speed forecasting in the central California wind resource area, EPRI-DOE-NREL Wind Energy Forecasting Meeting, Burlingame, CA; March 23, 1998.
    • (1998) EPRI-DOE-NREL Wind Energy Forecasting Meeting
    • McCarthy, E.1
  • 5
    • 77956501760 scopus 로고
    • Centre Bureau of Meteorology Training Melbourne: Bureau of Meteorology Training Centre
    • Centre Bureau of Meteorology Training. Meteorologist course: numerical weather prediction. Melbourne: Bureau of Meteorology Training Centre; 1994. p. 1096848.
    • (1994) Meteorologist Course: Numerical Weather Prediction , pp. 1096848
  • 6
    • 77957088306 scopus 로고    scopus 로고
    • Review of the use of Numerical Weather Prediction (NWP) models for wind energy assessment
    • S. Al-Yahyai, Y. Charabi, and A. Gastli Review of the use of Numerical Weather Prediction (NWP) models for wind energy assessment Renew Sustain Energy Rev 14 9 2010 3192 3198
    • (2010) Renew Sustain Energy Rev , vol.14 , Issue.9 , pp. 3192-3198
    • Al-Yahyai, S.1    Charabi, Y.2    Gastli, A.3
  • 8
    • 33646352206 scopus 로고    scopus 로고
    • Very short-term wind forecasting for Tasmanian power generation
    • C.W. Potter, and M. Negnevitsky Very short-term wind forecasting for Tasmanian power generation Power Syst 21 2 2006 965 972
    • (2006) Power Syst , vol.21 , Issue.2 , pp. 965-972
    • Potter, C.W.1    Negnevitsky, M.2
  • 10
    • 84883236134 scopus 로고    scopus 로고
    • A simplified risk-based method for short-term wind power commitment
    • R. Karki, S. Thapa, and R. Billinton A simplified risk-based method for short-term wind power commitment IEEE Trans on Sustain Energy 3 3 2012 498 505
    • (2012) IEEE Trans on Sustain Energy , vol.3 , Issue.3 , pp. 498-505
    • Karki, R.1    Thapa, S.2    Billinton, R.3
  • 11
    • 33947303690 scopus 로고    scopus 로고
    • An advanced statistical method for wind power forecasting
    • DOI 10.1109/TPWRS.2006.889078
    • G. Sideratos, and N.D. Hatziargyriou An advanced statistical method for wind power forecasting IEEE Trans Power Syst 22 1 2007 258 265 (Pubitemid 46437735)
    • (2007) IEEE Transactions on Power Systems , vol.22 , Issue.1 , pp. 258-265
    • Sideratos, G.1    Hatziargyriou, N.D.2
  • 13
    • 61349110874 scopus 로고    scopus 로고
    • A review of wind speed probability distributions used in wind energy analysis: Case studies in the Canary Islands
    • J.A. Carta, P. Ramírez, and S. Velázquez A review of wind speed probability distributions used in wind energy analysis: case studies in the Canary Islands Renew Sustain Energy Rev 13 5 2009 933 955
    • (2009) Renew Sustain Energy Rev , vol.13 , Issue.5 , pp. 933-955
    • Carta, J.A.1    Ramírez, P.2    Velázquez, S.3
  • 14
    • 84876125038 scopus 로고    scopus 로고
    • A comparative analysis of wind power density prediction methods for ÇanakkaleIntepe region, Turkey
    • Y. Oner, S. Ozcira, N. Bekiroglu, and I. Senol A comparative analysis of wind power density prediction methods for ÇanakkaleIntepe region, Turkey Renew Sustain Energy Rev 23 2013 491 502
    • (2013) Renew Sustain Energy Rev , vol.23 , pp. 491-502
    • Oner, Y.1    Ozcira, S.2    Bekiroglu, N.3    Senol, I.4
  • 15
    • 78649936397 scopus 로고    scopus 로고
    • Short-horizon prediction of wind power: A data-driven approach
    • (1112, 1122)
    • A. Kusiak, and Z. Zijun Short-horizon prediction of wind power: a data-driven approach EEE Trans Energy Convers 25 4 2010 (1112, 1122)
    • (2010) EEE Trans Energy Convers , vol.25 , Issue.4
    • Kusiak, A.1    Zijun, Z.2
  • 16
    • 43649097539 scopus 로고    scopus 로고
    • Statistical wind power forecasting models: Results for U.S wind farms
    • Austin, Texas; May 2003
    • Milligan M, Schwartz M, Wan Y. Statistical wind power forecasting models: results for U.S. wind farms, presented at WINDPOWER 2003, Austin, Texas; May 2003.
    • WINDPOWER 2003
    • Milligan, M.1    Schwartz, M.2    Wan, Y.3
  • 18
    • 77951665319 scopus 로고    scopus 로고
    • ARIMA-based time series model of stochastic wind power generation
    • P. Chen, T. Pedersen, B. Bak-Jensen, and Z. Chen ARIMA-based time series model of stochastic wind power generation IEEE Trans Power Syst 25 2 2010 667 676
    • (2010) IEEE Trans Power Syst , vol.25 , Issue.2 , pp. 667-676
    • Chen, P.1    Pedersen, T.2    Bak-Jensen, B.3    Chen, Z.4
  • 19
    • 58949103845 scopus 로고    scopus 로고
    • Day-ahead wind speed forecasting using f-ARIMA models
    • G.K. Rajesh, and K. Seetharaman Day-ahead wind speed forecasting using f-ARIMA models J Renew Energy 34 2009 1388 1393
    • (2009) J Renew Energy , vol.34 , pp. 1388-1393
    • Rajesh, G.K.1    Seetharaman, K.2
  • 26
    • 38349108557 scopus 로고    scopus 로고
    • Analysis of wind power generation and prediction using ANN: A case study
    • M. Carolin Mabel, and E. Fernandez Analysis of wind power generation and prediction using ANN: a case study J Renew Energy 33 2008 986 992
    • (2008) J Renew Energy , vol.33 , pp. 986-992
    • Carolin Mabel, M.1    Fernandez, E.2
  • 27
    • 0036779031 scopus 로고    scopus 로고
    • A novel approach for the forecasting of mean hourly wind speed time series
    • A. Steftos A novel approach for the forecasting of mean hourly wind speed time series J Renew Energy 27 2002 163 174
    • (2002) J Renew Energy , vol.27 , pp. 163-174
    • Steftos, A.1
  • 28
    • 58149474856 scopus 로고    scopus 로고
    • Accurate short term wind speed prediction by exploiting diversity in input data using banks of artificial neural networks
    • S. Salcedo-Sanz, Bellido, Garcia, Figuras, L. Prieto, and F. Correoso Accurate short term wind speed prediction by exploiting diversity in input data using banks of artificial neural networks J Neurocomput 71 2009 1336 1341
    • (2009) J Neurocomput , vol.71 , pp. 1336-1341
    • Salcedo-Sanz, S.1    Bellido2    Garcia3    Figuras4    Prieto, L.5    Correoso, F.6
  • 31
    • 78649929820 scopus 로고    scopus 로고
    • Wind speed forecasting of genetic neural model based on rough set theory
    • S. Guo, Y. Li, and S. Xiao Wind speed forecasting of genetic neural model based on rough set theory Crit Infrastruct (CRIS) 2010 1 6
    • (2010) Crit Infrastruct (CRIS) , pp. 1-6
    • Guo, S.1    Li, Y.2    Xiao, S.3
  • 34
    • 2942570109 scopus 로고    scopus 로고
    • A fuzzy model for wind speed prediction and power generation in wind parks using spatial correlation
    • I. Damousis, M.C. Alexiadis, J.B. Theocharis, and P.S. Dokopoulos A fuzzy model for wind speed prediction and power generation in wind parks using spatial correlation IEEE Trans Energy Convers 19 2004 352 360
    • (2004) IEEE Trans Energy Convers , vol.19 , pp. 352-360
    • Damousis, I.1    Alexiadis, M.C.2    Theocharis, J.B.3    Dokopoulos, P.S.4
  • 35
    • 33847369874 scopus 로고    scopus 로고
    • A locally recurrent fuzzy neural network with application to the wind speed prediction using spatial correlation
    • DOI 10.1016/j.neucom.2006.01.032, PII S0925231206002505, Advances in Computational Intelligence and Learning 14th European Symposium on Artificial Neural Networks 2006
    • T.G. Barbounis, and J.B. Theocharis A locally recurrent fuzzy neural network with application to wind speed prediction using spatial correlation J Neurocomput 70 2007 1525 1542 (Pubitemid 46336755)
    • (2007) Neurocomputing , vol.70 , Issue.7-9 , pp. 1525-1542
    • Barbounis, T.G.1    Theocharis, J.B.2
  • 37
    • 84883236134 scopus 로고    scopus 로고
    • A simplified risk-based method for short-term wind power commitment
    • R. Karki, S. Thapa, and R. Billinton A simplified risk-based method for short-term wind power commitment IEEE Trans Sustain Energy 3 3 2012 498 505
    • (2012) IEEE Trans Sustain Energy , vol.3 , Issue.3 , pp. 498-505
    • Karki, R.1    Thapa, S.2    Billinton, R.3
  • 39
    • 84881341396 scopus 로고    scopus 로고
    • Wind power grouping forecasts and its uncertainty analysis using optimized relevance vector machine
    • J. Yan, Y. Liu, S. Han, and M. Qiu Wind power grouping forecasts and its uncertainty analysis using optimized relevance vector machine Renew and Sustain Energy Rev 27 2013 613 621
    • (2013) Renew and Sustain Energy Rev , vol.27 , pp. 613-621
    • Yan, J.1    Liu, Y.2    Han, S.3    Qiu, M.4
  • 40
    • 78751555576 scopus 로고    scopus 로고
    • Performance evaluation of short-term wind speed prediction techniques
    • Sreelakshmi, and R. Kumar Performance evaluation of short-term wind speed prediction techniques Int J Comput Sci Netw Secur 8 8 2008 162 169
    • (2008) Int J Comput Sci Netw Secur , vol.8 , Issue.8 , pp. 162-169
    • Sreelakshmi1    Kumar, R.2
  • 42
    • 84862729690 scopus 로고    scopus 로고
    • A new strategy for predicting short-term wind speed using soft computing models
    • A.U. Haque, P. Mandal, M.E. Kaye, J. Meng, L. Chang, and T. Senjyu A new strategy for predicting short-term wind speed using soft computing models Renew Sustain Energy Rev 16 7 2012 4563 4573
    • (2012) Renew Sustain Energy Rev , vol.16 , Issue.7 , pp. 4563-4573
    • Haque, A.U.1    Mandal, P.2    Kaye, M.E.3    Meng, J.4    Chang, L.5    Senjyu, T.6
  • 50
    • 33750122966 scopus 로고    scopus 로고
    • Locally recurrent neural networks optimal filtering algorithms: Application to wind speed prediction using spatial correlation
    • DOI 10.1109/IJCNN.2005.1556353, 1556353, Proceedings of the International Joint Conference on Neural Networks, IJCNN 2005
    • T.G. Barbounis, and J.B. Theocharis Locally recurrent neural networks optimal filtering algorithms: application to wind speed prediction using spatial correlation IEEE Int Joint Conf Neural Netw 5 2005 2711 2716 (Pubitemid 44591630)
    • (2005) Proceedings of the International Joint Conference on Neural Networks , vol.5 , pp. 2711-2716
    • Barbounis, T.G.1    Theocharis, J.B.2
  • 51
    • 84888880426 scopus 로고    scopus 로고
    • Probabilistic assessment of available transfer capability considering spatial correlation in wind power integrated system
    • L. Gang, C. Jinfu, C. Defu, S. Dongyuan, and D. Xianzhong Probabilistic assessment of available transfer capability considering spatial correlation in wind power integrated system IET Gener Transm Distrib 7 12 2013 1527 1535
    • (2013) IET Gener Transm Distrib , vol.7 , Issue.12 , pp. 1527-1535
    • Gang, L.1    Jinfu, C.2    Defu, C.3    Dongyuan, S.4    Xianzhong, D.5
  • 52
    • 84892569845 scopus 로고    scopus 로고
    • Short-term wind power ensemble prediction based on gaussian processes and neural networks
    • D. Lee, and R. Baldick Short-term wind power ensemble prediction based on gaussian processes and neural networks IEEE Trans Smart Grid 5 1 2014 501 510
    • (2014) IEEE Trans Smart Grid , vol.5 , Issue.1 , pp. 501-510
    • Lee, D.1    Baldick, R.2
  • 53
    • 79955830495 scopus 로고    scopus 로고
    • Neural network ensemble method study for wind power prediction
    • (25-28)
    • S. Han, Y. Liu, and J. Yan Neural network ensemble method study for wind power prediction Power and Energy Eng Conf (APPEEC) 2011 1 4 (25-28)
    • (2011) Power and Energy Eng Conf (APPEEC) , pp. 1-4
    • Han, S.1    Liu, Y.2    Yan, J.3
  • 54
    • 84864143531 scopus 로고    scopus 로고
    • Short-term wind-power prediction based on wavelet transform - Support vector and statistic-characteristics analysis
    • L. Yongqian, J. Shi, Y. Yang, and W.J. Lee Short-term wind-power prediction based on wavelet transform - support vector and statistic- characteristics analysis IEEE Trans Ind Appl 48 4 2012 1136 1141
    • (2012) IEEE Trans Ind Appl , vol.48 , Issue.4 , pp. 1136-1141
    • Yongqian, L.1    Shi, J.2    Yang, Y.3    Lee, W.J.4
  • 59
    • 79959557168 scopus 로고    scopus 로고
    • Wind power prediction by a new forecast engine composed of modified hybrid neural network and enhanced particle swarm optimization
    • N. Amjady, F. Keynia, and H. Zareipour Wind power prediction by a new forecast engine composed of modified hybrid neural network and enhanced particle swarm optimization IEEE Trans Sustain Energy 2 3 2011 265 276
    • (2011) IEEE Trans Sustain Energy , vol.2 , Issue.3 , pp. 265-276
    • Amjady, N.1    Keynia, F.2    Zareipour, H.3
  • 61
    • 84886595586 scopus 로고    scopus 로고
    • Hybrid control of a wind induction generator based on Grey-Elman neural network
    • W.M. Lin, C.M. Hong, C.H. Huang, and T.C. Ou Hybrid control of a wind induction generator based on Grey-Elman neural network IEEE Trans Control Syst Technol 21 6 2013 2367 2373
    • (2013) IEEE Trans Control Syst Technol , vol.21 , Issue.6 , pp. 2367-2373
    • Lin, W.M.1    Hong, C.M.2    Huang, C.H.3    Ou, T.C.4
  • 63
    • 79961127156 scopus 로고    scopus 로고
    • Multi-step forecasting for wind speed using a modified EMD-based artificial neural network model
    • Z. Guo, W. Zhao, H. Lu, and J. Wang Multi-step forecasting for wind speed using a modified EMD-based artificial neural network model Renew Energy 37 1 2012 241 249
    • (2012) Renew Energy , vol.37 , Issue.1 , pp. 241-249
    • Guo, Z.1    Zhao, W.2    Lu, H.3    Wang, J.4
  • 65
    • 35949006791 scopus 로고
    • Determining embedding dimension for phase-space reconstruction using a geometrical construction
    • H.D.I. Abarbanel, R. Brown, and M.B. Kennel Determining embedding dimension for phase-space reconstruction using a geometrical construction Phys Rev A 45 1992 3403 3411
    • (1992) Phys Rev A , vol.45 , pp. 3403-3411
    • Abarbanel, H.D.I.1    Brown, R.2    Kennel, M.B.3
  • 66
    • 44049111332 scopus 로고
    • Testing for nonlinearity in time-series: The method of surrogate data
    • S. Eubank, J.D. Farmer, B. Galdrikian, A. Longtin, and J. Theiler Testing for nonlinearity in time-series: the method of surrogate data Physica D 58 1992 77 94
    • (1992) Physica D , vol.58 , pp. 77-94
    • Eubank, S.1    Farmer, J.D.2    Galdrikian, B.3    Longtin, A.4    Theiler, J.5
  • 68
    • 0004086787 scopus 로고
    • A study in the analysis of stationary time series
    • (2nd ed.)
    • H. Wold A study in the analysis of stationary time series Uppsala, Almqvist & Wiksell 1938 1954 (2nd ed.)
    • (1938) Uppsala, Almqvist & Wiksell , pp. 1954
    • Wold, H.1
  • 70
    • 0011870081 scopus 로고    scopus 로고
    • Nonlinear time series analysis
    • J.A.K. Suykens, J. Vandewalle, Kluwer Academic Publishers Boston
    • U. Parlitz Nonlinear time series analysis J.A.K. Suykens, J. Vandewalle, Nonlinear modeling - advanced black-box techniques 1998 Kluwer Academic Publishers Boston 256
    • (1998) Nonlinear Modeling - Advanced Black-box Techniques , pp. 256
    • Parlitz, U.1
  • 73
    • 0001874436 scopus 로고    scopus 로고
    • Practical method for determining the minimum embedding dimension of a scalar time series
    • PII S0167278997001188
    • L. Cao Practical method for determining the minimum embedding dimension of a scalar time series Physica D 110 1997 43 50 (Pubitemid 127701588)
    • (1997) Physica D: Nonlinear Phenomena , vol.110 , Issue.1-2 , pp. 43-50
    • Cao, L.1
  • 74
    • 6144236430 scopus 로고    scopus 로고
    • Improved surrogate data for nonlinearity tests
    • A. Schmitz, and T. Schreiber Improved surrogate data for nonlinearity tests Phys Rev Lett 77 1996 635 638 (Pubitemid 126624517)
    • (1996) Physical Review Letters , vol.77 , Issue.4 , pp. 635-638
    • Schreiber, T.1    Schmitz, A.2
  • 77
    • 0001829246 scopus 로고
    • Introduction to Grey system theory
    • D. Julong Introduction to Grey system theory J Grey Syst 1 1989 1 24
    • (1989) J Grey Syst , vol.1 , pp. 1-24
    • Julong, D.1
  • 80
    • 0003733873 scopus 로고
    • Prentice-Hall, Upper Saddle River NJ, USA
    • L. Cohen Time-frequency analysis 1995 Prentice-Hall, Upper Saddle River NJ, USA
    • (1995) Time-frequency Analysis
    • Cohen, L.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.