메뉴 건너뛰기




Volumn 10, Issue 5, 1997, Pages 857-873

Discovering neural nets with low Kolmogorov complexity and high generalization capability

Author keywords

Generalization; Kolmogorov complexity; Levin complexity; Neural networks; Self sizing programs; Solomonoff Levin distribution; Universal search

Indexed keywords

COMPUTATIONAL COMPLEXITY; COMPUTER SIMULATION; LEARNING ALGORITHMS; LEARNING SYSTEMS; PROBABILITY;

EID: 0031194381     PISSN: 08936080     EISSN: None     Source Type: Journal    
DOI: 10.1016/S0893-6080(96)00127-X     Document Type: Article
Times cited : (127)

References (33)
  • 1
    • 0039960670 scopus 로고
    • Time, space and randomness
    • Boston, MA: Laboratory for Computer Science, MIT
    • Adleman, L. (1979). Time, space and randomness (Technical Report MIT/LCS/79/TM-131). Boston, MA: Laboratory for Computer Science, MIT.
    • (1979) Technical Report , vol.MIT-LCS-79-TM-131
    • Adleman, L.1
  • 2
    • 0039368340 scopus 로고
    • Application of time-bounded Kolmogorov complexity in complexity theory
    • O. Watanabe (Ed.), Berlin: EATCS Monographs on Theoretical Computer Science, Springer
    • Allender, A. (1992). Application of time-bounded Kolmogorov complexity in complexity theory. In O. Watanabe (Ed.), Kolmogorov complexity and computational complexity (pp. 6-22). Berlin: EATCS Monographs on Theoretical Computer Science, Springer.
    • (1992) Kolmogorov Complexity and Computational Complexity , pp. 6-22
    • Allender, A.1
  • 3
    • 0000729504 scopus 로고
    • Statistical theory of learning curves under entropic loss criterion
    • Amari, S., & Murata, N. (1993). Statistical theory of learning curves under entropic loss criterion. Neural Computation. 5 (1), 140-153.
    • (1993) Neural Computation , vol.5 , Issue.1 , pp. 140-153
    • Amari, S.1    Murata, N.2
  • 4
    • 0000818877 scopus 로고
    • Understanding retinal color coding from first principles
    • Atick, J. J., Li, Z., & Redlich, A. N. (1992). Understanding retinal color coding from first principles. Neural Computation, 4, 559-572.
    • (1992) Neural Computation , vol.4 , pp. 559-572
    • Atick, J.J.1    Li, Z.2    Redlich, A.N.3
  • 5
    • 0001471775 scopus 로고
    • Unsupervised learning
    • Barlow, H. B. (1989). Unsupervised learning. Neural Computation, 1 (3), 295-311.
    • (1989) Neural Computation , vol.1 , Issue.3 , pp. 295-311
    • Barlow, H.B.1
  • 6
    • 0001347323 scopus 로고
    • Complexity regularization with application to artificial neural networks
    • Dortrecht: Kluwer Academic Publishers
    • Barron, A. R. (1988). Complexity regularization with application to artificial neural networks. In Nonparametric functional estimation and related topics (pp. 561-576). Dortrecht: Kluwer Academic Publishers.
    • (1988) Nonparametric Functional Estimation and Related Topics , pp. 561-576
    • Barron, A.R.1
  • 7
    • 84889559296 scopus 로고
    • Technical Report COINS 89-89. Amherst, MA: University of Massachusetts
    • Barto, A. G. (1989). Connectionist approaches for control (Technical Report COINS 89-89). Amherst, MA: University of Massachusetts.
    • (1989) Connectionist Approaches for Control
    • Barto, A.G.1
  • 9
    • 84889516607 scopus 로고
    • Algorithmic information theory
    • D. Reidel (Ed.), Dortrecht: Kluwer Academic Publishers
    • Barzdin, Y. M. (1988). Algorithmic information theory. In D. Reidel (Ed.), Encyclopaedia of mathematics (Vol. 1, pp. 140-142). Dortrecht: Kluwer Academic Publishers.
    • (1988) Encyclopaedia of Mathematics , vol.1 , pp. 140-142
    • Barzdin, Y.M.1
  • 10
    • 0001160588 scopus 로고
    • What size net gives valid generalization?
    • Baum, E. B., & Haussler, D. (1989). What size net gives valid generalization?. Neural Computation, 1 (1), 151-160.
    • (1989) Neural Computation , vol.1 , Issue.1 , pp. 151-160
    • Baum, E.B.1    Haussler, D.2
  • 11
    • 0039830274 scopus 로고
    • Unsupervised learning procedures for neural networks
    • Becker, S. (1991). Unsupervised learning procedures for neural networks. International Journal of Neural Systems, 2 (1&2), 17-33.
    • (1991) International Journal of Neural Systems , vol.2 , Issue.1-2 , pp. 17-33
    • Becker, S.1
  • 12
    • 0002989012 scopus 로고
    • Logical depth and physical complexity
    • Oxford: Oxford University Press, and Hamburg: Kammerer & Unverzagt
    • Bennett, C. H. (1988). Logical depth and physical complexity. In The universal Turing machine: a lialf century survey (Vol. 1, pp. 227-258). Oxford: Oxford University Press, and Hamburg: Kammerer & Unverzagt.
    • (1988) The Universal Turing Machine: A Lialf Century Survey , vol.1 , pp. 227-258
    • Bennett, C.H.1
  • 14
    • 84918358658 scopus 로고
    • On the length of programs for computing finite binary sequences
    • Chaitin, G. (1966). On the length of programs for computing finite binary sequences. Journal of the ACM, 13, 547-569.
    • (1966) Journal of the ACM , vol.13 , pp. 547-569
    • Chaitin, G.1
  • 15
    • 77954563357 scopus 로고
    • On the length of programs for computing finite binary sequences: Statistical considerations
    • Chaitin, G. (1969). On the length of programs for computing finite binary sequences: statistical considerations. Journal of the ACM, 16, 145-159.
    • (1969) Journal of the ACM , vol.16 , pp. 145-159
    • Chaitin, G.1
  • 16
    • 0016532771 scopus 로고
    • A theory of program size formally identical to information theory
    • Chaitin, G. (1975). A theory of program size formally identical to information theory. Journal of the ACM, 22, 329-340.
    • (1975) Journal of the ACM , vol.22 , pp. 329-340
    • Chaitin, G.1
  • 18
    • 0000179217 scopus 로고
    • Kolmogorov's contributions to information theory and algorithmic complexity
    • Cover, T. M., Gács, P., & Gray, R. M. (1989). Kolmogorov's contributions to information theory and algorithmic complexity. Annals of Probability Theory, 17, 840-865.
    • (1989) Annals of Probability Theory , vol.17 , pp. 840-865
    • Cover, T.M.1    Gács, P.2    Gray, R.M.3
  • 19
    • 0028388685 scopus 로고
    • TD(λ): Convergence with probability 1
    • Dayan, P., & Sejnowski, T. (1994). TD(λ): Convergence with probability 1. Machine Learning, 14, 295-301.
    • (1994) Machine Learning , vol.14 , pp. 295-301
    • Dayan, P.1    Sejnowski, T.2
  • 22
    • 0000189643 scopus 로고
    • On the symmetry of algorithmic information
    • Gàcs, P. (1974). On the symmetry of algorithmic information. Soviet Math. Dokl., 15, 1477-1480.
    • (1974) Soviet Math. Dokl. , vol.15 , pp. 1477-1480
    • Gàcs, P.1
  • 23
    • 0025227638 scopus 로고
    • A connectionist learning algorithm with provable generalization and scaling bounds
    • Gallant, S. I. (1990). A connectionist learning algorithm with provable generalization and scaling bounds. Neural Networks, 3, 191-201.
    • (1990) Neural Networks , vol.3 , pp. 191-201
    • Gallant, S.I.1
  • 25
    • 0001704198 scopus 로고
    • Structural risk minimization for character recognition
    • D. S. Lippman, J. E. Moody & D. Touretzky (Eds.), San Mateo, CA: Morgan Kaufmann
    • Guyon, I., Vapnik, V., Boser, B., Bottou, L., & Solla, S. A. (1992). Structural risk minimization for character recognition. In D. S. Lippman, J. E. Moody & D. Touretzky (Eds.), Advances in neural information processing systems 4 (pp. 471-479). San Mateo, CA: Morgan Kaufmann.
    • (1992) Advances in Neural Information Processing Systems , vol.4 , pp. 471-479
    • Guyon, I.1    Vapnik, V.2    Boser, B.3    Bottou, L.4    Solla, S.A.5
  • 27
    • 0001234705 scopus 로고
    • Second order derivatives for network pruning: Optimal brain surgeon
    • D. S. Lippman, J. E. Moody & D. S. Touretzky (Eds.), San Mateo, CA: Morgan Kaufmann
    • Hassibi, B., & Stork, D. G. (1993). Second order derivatives for network pruning: optimal brain surgeon. In D. S. Lippman, J. E. Moody & D. S. Touretzky (Eds.), Advances in neural information processing systems 5 (pp. 164-171). San Mateo, CA: Morgan Kaufmann.
    • (1993) Advances in Neural Information Processing Systems , vol.5 , pp. 164-171
    • Hassibi, B.1    Stork, D.G.2
  • 28
    • 0024082469 scopus 로고
    • Quantifying inductive bias: AI learning algorithms and Valiant's learning framework
    • Haussler, D. (1988). Quantifying inductive bias: AI learning algorithms and Valiant's learning framework. Artificial Intelligence, 36, 177-221.
    • (1988) Artificial Intelligence , vol.36 , pp. 177-221
    • Haussler, D.1
  • 29
    • 84889517640 scopus 로고
    • Unpublished diploma thesis. Fakultät für Informatik, Lehrstuhl Prof. Brauer, Technische Universität München
    • Heil, S. (1995). Universelle Suche und inkrementelles Lernen. Unpublished diploma thesis. Fakultät für Informatik, Lehrstuhl Prof. Brauer, Technische Universität München.
    • (1995) Universelle Suche und Inkrementelles Lernen
    • Heil, S.1
  • 31
    • 0009071609 scopus 로고
    • Simplifying neural nets by discovering flat minima
    • G. Tesauro, D. S. Touretzky & T. K. Leen (Eds.), Cambridge, MA: MIT Press
    • Hochreiter, S., & Schmidhuber, J. (1995). Simplifying neural nets by discovering flat minima. In G. Tesauro, D. S. Touretzky & T. K. Leen (Eds.), Advances in neural information processing systems 7 (pp. 529-536). Cambridge, MA: MIT Press.
    • (1995) Advances in Neural Information Processing Systems , vol.7 , pp. 529-536
    • Hochreiter, S.1    Schmidhuber, J.2
  • 32
    • 84889541091 scopus 로고    scopus 로고
    • Flat minima
    • In press. Extended version available in WWW homepages of Hochreiter and Schmidhuber
    • Hochreiter, S., & Schmidhuber, J. (1996). Flat minima. Neural Computation. In press. Extended version available in WWW homepages of Hochreiter and Schmidhuber.
    • (1996) Neural Computation
    • Hochreiter, S.1    Schmidhuber, J.2
  • 33
    • 0001902056 scopus 로고
    • Three approaches to the quantitative definition of information
    • Kolmogorov, A. (1965). Three approaches to the quantitative definition of information. Problems of Information Transmission, 1, 1-11.
    • (1965) Problems of Information Transmission , vol.1 , pp. 1-11
    • Kolmogorov, A.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.