메뉴 건너뛰기




Volumn 43, Issue 16, 2014, Pages 3499-3515

Inverse probability weighting with missing predictors of treatment assignment or missingness

Author keywords

Causal inference; Confounding; Horwitz Thompson estimator; Missing at random; Missing Not at random

Indexed keywords

STATISTICS;

EID: 84905483303     PISSN: 03610926     EISSN: 1532415X     Source Type: Journal    
DOI: 10.1080/03610926.2012.700371     Document Type: Article
Times cited : (59)

References (42)
  • 1
    • 39649097189 scopus 로고    scopus 로고
    • Loss and representativeness in a biomedical survey at age 45 years: 1958 British birth cohort
    • 223.
    • Atherton, K., Fuller, E., Shepherd, P., Strachan, D.P., Power, C. (2008). Loss and representativeness in a biomedical survey at age 45 years: 1958 British birth cohort. J. Epidemiol. Comm. Health 62: 216-223.
    • (2008) J. Epidemiol. Comm. Health , vol.62 , pp. 216
    • Atherton, K.1    Fuller, E.2    Shepherd, P.3    Strachan, D.P.4    Power, C.5
  • 2
    • 0041626110 scopus 로고    scopus 로고
    • Comparison of logistic regression versus propensity score when the number of events is low and there are multiple confounders
    • 287.
    • Cepeda, M.S., Boston, R., Farrar, J.T., Strom, B.L. (2003). Comparison of logistic regression versus propensity score when the number of events is low and there are multiple confounders. Am. J. Epidemiol. 158: 280-287.
    • (2003) Am. J. Epidemiol. , vol.158 , pp. 280
    • Cepeda, M.S.1    Boston, R.2    Farrar, J.T.3    Strom, B.L.4
  • 3
    • 2242479444 scopus 로고    scopus 로고
    • Estimating and using propensity scores with partially missing data
    • 759.
    • DAgostino, R.B., Rubin, D.B. (2000). Estimating and using propensity scores with partially missing data. J. Am. Stat. Assoc. 95: 749-759.
    • (2000) J. Am. Stat. Assoc. , vol.95 , pp. 749
    • Dagostino, R.B.1    Rubin, D.B.2
  • 4
    • 43249098342 scopus 로고    scopus 로고
    • Using multiple imputation and propensity scores to test the effect of car seats and seat belt usage on injury severity from trauma registry data
    • 927.
    • Hayes, J.R., Groner, J.I. (2008). Using multiple imputation and propensity scores to test the effect of car seats and seat belt usage on injury severity from trauma registry data. J. Pediatr. Surg. 43: 924-927.
    • (2008) J. Pediatr. Surg. , vol.43 , pp. 924
    • Hayes, J.R.1    Groner, J.I.2
  • 5
    • 84947396376 scopus 로고
    • A generalisation of sampling without replacement from a finite universe
    • 685.
    • Horwitz, D.G., Thompson, D.J. (1985). A generalisation of sampling without replacement from a finite universe. J. Am. Stat. Assoc. 47: 663-685.
    • (1985) J. Am. Stat. Assoc. , vol.47 , pp. 663
    • Horwitz, D.G.1    Thompson, D.J.2
  • 6
    • 4444230264 scopus 로고    scopus 로고
    • Stratification and weighting via the propensity score in estimation of causal treatment effects: A comparative study
    • 2960.
    • Lunceford, J.K., Davidian, M. (2004). Stratification and weighting via the propensity score in estimation of causal treatment effects: a comparative study. Stat. Med. 23: 2937-2960.
    • (2004) Stat. Med. , vol.23 , pp. 2937
    • Lunceford, J.K.1    Davidian, M.2
  • 7
    • 65949118268 scopus 로고    scopus 로고
    • Estimating and using propensity scores in presence of missing background data: An application to assess the impact of childbearing on wellbeing
    • 273.
    • Mattei, A. (2009). Estimating and using propensity scores in presence of missing background data: an application to assess the impact of childbearing on wellbeing. Stat. Methods Appl. 18: 257-273.
    • (2009) Stat. Methods Appl. , vol.18 , pp. 257
    • Mattei, A.1
  • 8
    • 79951705391 scopus 로고    scopus 로고
    • Estimating propensity scores with missing covariate data using general location mixture models
    • 641.
    • Mitra, R., Reiter, J.P. (2011). Estimating propensity scores with missing covariate data using general location mixture models. Stat. Med. 30: 627-641.
    • (2011) Stat. Med. , vol.30 , pp. 627
    • Mitra, R.1    Reiter, J.P.2
  • 9
    • 0345659236 scopus 로고    scopus 로고
    • Proper and improper multiple imputation
    • 627.
    • Nielsen, S.F. (2003). Proper and improper multiple imputation. Int. Stat. Rev. 71: 593-627.
    • (2003) Int. Stat. Rev. , vol.71 , pp. 593
    • Nielsen, S.F.1
  • 10
    • 67549090540 scopus 로고    scopus 로고
    • Propensity score estimation with missing values using a multiple imputation missingness pattern (MIMP) approach
    • 1414.
    • Qu, Y., Lipkovich, I. (2009). Propensity score estimation with missing values using a multiple imputation missingness pattern (MIMP) approach. Stat. Med. 28: 1402-1414.
    • (2009) Stat. Med. , vol.28 , pp. 1402
    • Qu, Y.1    Lipkovich, I.2
  • 11
    • 0000555875 scopus 로고    scopus 로고
    • Inference for imputation estimators
    • 124.
    • Robins, J.M., Wang, N. (2000). Inference for imputation estimators. Biometrika 87: 113-124.
    • (2000) Biometrika , vol.87 , pp. 113
    • Robins, J.M.1    Wang, N.2
  • 12
    • 77951622706 scopus 로고
    • The central role of the propensity score in observational studies for causal effects
    • 55.
    • Rosenbaum, P.R., Rubin, R.J.A. (1983). The central role of the propensity score in observational studies for causal effects. Biometrika 70: 41-55.
    • (1983) Biometrika , vol.70 , pp. 41
    • Rosenbaum, P.R.1    Rubin, R.J.A.2
  • 13
    • 0028633428 scopus 로고
    • A note on the bias of estimators with missing data
    • 1170.
    • Rotnitzky, A., Wypij, D. (1994). A note on the bias of estimators with missing data. Biometrics 44: 1163-1170.
    • (1994) Biometrics , vol.44 , pp. 1163
    • Rotnitzky, A.1    Wypij, D.2
  • 14
    • 33646501982 scopus 로고    scopus 로고
    • Multiple imputation of missing values: Update of ice
    • 536.
    • Royston, J.P. (2005). Multiple imputation of missing values: Update of ice. Stat. J. 5: 527-536.
    • (2005) Stat. J. , vol.5 , pp. 527
    • Royston, J.P.1
  • 15
    • 28444485368 scopus 로고    scopus 로고
    • Multiple imputation in multivariate problems when the imputation and analysis models differ
    • 35.
    • Schafer, J.L. (2003). Multiple imputation in multivariate problems when the imputation and analysis models differ. Stat. Neerlandica 57: 19-35.
    • (2003) Stat. Neerlandica , vol.57 , pp. 19
    • Schafer, J.L.1
  • 16
    • 84878516633 scopus 로고    scopus 로고
    • Review of inverse probability weighting for dealing with missing data
    • 295.
    • Seaman, S.R., White, I.R. (2013). Review of inverse probability weighting for dealing with missing data. Stat. Methods Med. Res. 22: 278-295.
    • (2013) Stat. Methods Med. Res. , vol.22 , pp. 278
    • Seaman, S.R.1    White, I.R.2
  • 17
    • 84858861527 scopus 로고    scopus 로고
    • Combining multiple imputation and inverse-probability weighting
    • 137.
    • Seaman, S.R., White, I.R., Copas, A.J., Li, L. (2012). Combining multiple imputation and inverse-probability weighting. Biometrics 68: 129-137.
    • (2012) Biometrics , vol.68 , pp. 129
    • Seaman, S.R.1    White, I.R.2    Copas, A.J.3    Li, L.4
  • 18
    • 0035761320 scopus 로고    scopus 로고
    • Handling baseline differences and missing items in a longitudinal study of HIV risk among runaway youths
    • 329.
    • Song, J., Belin, T.R., Lee, M.B., Gao, X., Rotheram-Borus, M.J. (2001). Handling baseline differences and missing items in a longitudinal study of HIV risk among runaway youths. Health Serv. Outcomes Res. Method. 2: 317-329.
    • (2001) Health Serv. Outcomes Res. Method. , vol.2 , pp. 317
    • Song, J.1    Belin, T.R.2    Lee, M.B.3    Gao, X.4    Rotheram-Borus, M.J.5
  • 19
    • 17744378170 scopus 로고    scopus 로고
    • Analytic strategies to adjust confounding using exposure propensity scores and disease risk scores: Nonsteroidal antiinflammatory drugs and short-term mortality in the elderly
    • 898.
    • Stürmer, T., Schneeweiss, S., Brookhart, M.A., Rothman, K.J., Avorn, J., Glynn, R.J. (2005). Analytic strategies to adjust confounding using exposure propensity scores and disease risk scores: Nonsteroidal antiinflammatory drugs and short-term mortality in the elderly. Am. J. Epidemiol. 161: 891-898.
    • (2005) Am. J. Epidemiol. , vol.161 , pp. 891
    • Stürmer, T.1    Schneeweiss, S.2    Brookhart, M.A.3    Rothman, K.J.4    Avorn, J.5    Glynn, R.J.6
  • 20
    • 34147111878 scopus 로고    scopus 로고
    • Prenatal exposures and glucose metabolism in adulthood
    • 924.
    • Thomas, C., Hypponen, E., Power, C. (2007). Prenatal exposures and glucose metabolism in adulthood. Diabetes Care 30: 918-924.
    • (2007) Diabetes Care , vol.30 , pp. 918
    • Thomas, C.1    Hypponen, E.2    Power, C.3
  • 22
    • 39649097189 scopus 로고    scopus 로고
    • Loss and representativeness in a biomedical survey at age 45 years: 1958 british birth cohort
    • Atherton, K., Fuller, E., Shepherd, P., Strachan, D. P., Power, C. (2008). Loss and representativeness in a biomedical survey at age 45 years: 1958 British birth cohort. J. Epidemiol. Comm. Health 62:216-223.
    • (2008) J. Epidemiol. Comm. Health , vol.62 , pp. 216-223
    • Atherton, K.1    Fuller, E.2    Shepherd, P.3    Strachan, D.P.4    Power, C.5
  • 23
    • 0041626110 scopus 로고    scopus 로고
    • Comparison of logistic regression versus propensity score when the number of events is low and there are multiple confounders
    • Cepeda, M. S., Boston, R., Farrar, J. T., Strom, B. L. (2003). Comparison of logistic regression versus propensity score when the number of events is low and there are multiple confounders. Am. J. Epidemiol. 158:280-287.
    • (2003) Am. J. Epidemiol. , vol.158 , pp. 280-287
    • Cepeda, M.S.1    Boston, R.2    Farrar, J.T.3    Strom, B.L.4
  • 24
    • 2242479444 scopus 로고    scopus 로고
    • Estimating and using propensity scores with partially missing data
    • D'Agostino, R. B., Rubin, D. B. (2000). Estimating and using propensity scores with partially missing data. J. Am. Stat. Assoc. 95:749-759.
    • (2000) J. Am. Stat. Assoc. , vol.95 , pp. 749-759
    • D'Agostino, R.B.1    Rubin, D.B.2
  • 25
    • 43249098342 scopus 로고    scopus 로고
    • Using multiple imputation and propensity scores to test the effect of car seats and seat belt usage on injury severity from trauma registry data
    • Hayes, J. R., Groner, J. I. (2008). Using multiple imputation and propensity scores to test the effect of car seats and seat belt usage on injury severity from trauma registry data. J. Pediatr. Surg. 43:924-927.
    • (2008) J. Pediatr. Surg. , vol.43 , pp. 924-927
    • Hayes, J.R.1    Groner, J.I.2
  • 26
    • 84947396376 scopus 로고
    • A generalisation of sampling without replacement from a finite universe
    • Horwitz, D. G., Thompson, D. J. (1985). A generalisation of sampling without replacement from a finite universe. J. Am. Stat. Assoc. 47:663-685.
    • (1985) J. Am. Stat. Assoc. , vol.47 , pp. 663-685
    • Horwitz, D.G.1    Thompson, D.J.2
  • 27
    • 4444230264 scopus 로고    scopus 로고
    • Stratification and weighting via the propensity score in estimation of causal treatment effects: A comparative study
    • Lunceford, J. K., Davidian, M. (2004). Stratification and weighting via the propensity score in estimation of causal treatment effects: a comparative study. Stat. Med. 23:2937-2960.
    • (2004) Stat. Med. , vol.23 , pp. 2937-2960
    • Lunceford, J.K.1    Davidian, M.2
  • 28
    • 65949118268 scopus 로고    scopus 로고
    • Estimating and using propensity scores in presence of missing background data: An application to assess the impact of childbearing on wellbeing
    • Mattei, A. (2009). Estimating and using propensity scores in presence of missing background data: an application to assess the impact of childbearing on wellbeing. Stat. Methods Appl. 18:257-273.
    • (2009) Stat. Methods Appl. , vol.18 , pp. 257-273
    • Mattei, A.1
  • 29
    • 79951705391 scopus 로고    scopus 로고
    • Estimating propensity scores with missing covariate data using general location mixture models
    • Mitra, R., Reiter, J. P. (2011). Estimating propensity scores with missing covariate data using general location mixture models. Stat. Med. 30:627-641.
    • (2011) Stat. Med. , vol.30 , pp. 627-641
    • Mitra, R.1    Reiter, J.P.2
  • 30
    • 0345659236 scopus 로고    scopus 로고
    • Proper and improper multiple imputation
    • Nielsen, S. F. (2003). Proper and improper multiple imputation. Int. Stat. Rev. 71:593-627.
    • (2003) Int. Stat. Rev. , vol.71 , pp. 593-627
    • Nielsen, S.F.1
  • 31
    • 67549090540 scopus 로고    scopus 로고
    • Propensity score estimation with missing values using a multiple imputation missingness pattern (MIMP) approach
    • Qu, Y., Lipkovich, I. (2009). Propensity score estimation with missing values using a multiple imputation missingness pattern (MIMP) approach. Stat. Med. 28:1402-1414.
    • (2009) Stat. Med. , vol.28 , pp. 1402-1414
    • Qu, Y.1    Lipkovich, I.2
  • 32
    • 0000555875 scopus 로고    scopus 로고
    • Inference for imputation estimators
    • Robins, J. M., Wang, N. (2000). Inference for imputation estimators. Biometrika 87:113-124.
    • (2000) Biometrika , vol.87 , pp. 113-124
    • Robins, J.M.1    Wang, N.2
  • 33
    • 77951622706 scopus 로고
    • The central role of the propensity score in observational studies for causal effects
    • Rosenbaum, P. R., Rubin, R. J. A. (1983). The central role of the propensity score in observational studies for causal effects. Biometrika 70:41-55.
    • (1983) Biometrika , vol.70 , pp. 41-55
    • Rosenbaum, P.R.1    Rubin, R.J.A.2
  • 34
    • 0028633428 scopus 로고
    • A note on the bias of estimators with missing data
    • Rotnitzky, A., Wypij, D. (1994). A note on the bias of estimators with missing data. Biometrics 44:1163-1170.
    • (1994) Biometrics , vol.44 , pp. 1163-1170
    • Rotnitzky, A.1    Wypij, D.2
  • 35
    • 33646501982 scopus 로고    scopus 로고
    • Multiple imputation of missing values: Update of ice
    • Royston, J. P. (2005). Multiple imputation of missing values: Update of ice. Stat. J. 5:527-536.
    • (2005) Stat. J. , vol.5 , pp. 527-536
    • Royston, J.P.1
  • 36
    • 28444485368 scopus 로고    scopus 로고
    • Multiple imputation in multivariate problems when the imputation and analysis models differ
    • Schafer, J. L. (2003). Multiple imputation in multivariate problems when the imputation and analysis models differ. Stat. Neerlandica 57:19-35.
    • (2003) Stat. Neerlandica , vol.57 , pp. 19-35
    • Schafer, J.L.1
  • 37
    • 84878516633 scopus 로고    scopus 로고
    • Review of inverse probability weighting for dealing with missing data
    • Seaman, S. R., White, I. R. (2013). Review of inverse probability weighting for dealing with missing data. Stat. Methods Med. Res. 22:278-295.
    • (2013) Stat. Methods Med. Res. , vol.22 , pp. 278-295
    • Seaman, S.R.1    White, I.R.2
  • 38
    • 84858861527 scopus 로고    scopus 로고
    • Combining multiple imputation and inverseprobability weighting
    • Seaman, S. R., White, I. R., Copas, A. J., Li, L. (2012). Combining multiple imputation and inverseprobability weighting. Biometrics 68:129-137.
    • (2012) Biometrics , vol.68 , pp. 129-137
    • Seaman, S.R.1    White, I.R.2    Copas, A.J.3    Li, L.4
  • 39
    • 0035761320 scopus 로고    scopus 로고
    • Handling baseline differences and missing items in a longitudinal study of HIV risk among runaway youths
    • Song, J., Belin, T. R., Lee, M. B., Gao, X., Rotheram-Borus, M. J. (2001). Handling baseline differences and missing items in a longitudinal study of HIV risk among runaway youths. Health Serv. Outcomes Res. Method. 2:317-329.
    • (2001) Health Serv. Outcomes Res. Method. , vol.2 , pp. 317-329
    • Song, J.1    Belin, T.R.2    Lee, M.B.3    Gao, X.4    Rotheram-Borus, M.J.5
  • 40
    • 17744378170 scopus 로고    scopus 로고
    • Analytic strategies to adjust confounding using exposure propensity scores and disease risk scores: Nonsteroidal antiinflammatory drugs and short-term mortality in the elderly
    • Stürmer, T., Schneeweiss, S., Brookhart, M. A., Rothman, K. J., Avorn, J., Glynn, R. J. (2005). Analytic strategies to adjust confounding using exposure propensity scores and disease risk scores: Nonsteroidal antiinflammatory drugs and short-term mortality in the elderly. Am. J. Epidemiol. 161:891-898.
    • (2005) Am. J. Epidemiol. , vol.161 , pp. 891-898
    • Stürmer, T.1    Schneeweiss, S.2    Brookhart, M.A.3    Rothman, K.J.4    Avorn, J.5    Glynn, R.J.6
  • 41
    • 34147111878 scopus 로고    scopus 로고
    • Prenatal exposures and glucose metabolism in adulthood
    • Thomas, C., Hypponen, E., Power, C. (2007). Prenatal exposures and glucose metabolism in adulthood. Diabetes Care 30:918-924.
    • (2007) Diabetes Care , vol.30 , pp. 918-924
    • Thomas, C.1    Hypponen, E.2    Power, C.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.