-
1
-
-
36549102227
-
Rate equation analysis of microcavity lasers
-
Yokoyama H, Brorson SD. Rate equation analysis of microcavity lasers. J Appl Phys 1989;66:4801-4805.
-
(1989)
J Appl Phys
, vol.66
, pp. 4801-4805
-
-
Yokoyama, H.1
Brorson, S.D.2
-
2
-
-
0026254937
-
Analysis of semiconductor microcavity lasers using rate equations
-
Björk G, Yamamoto Y. Analysis of semiconductor microcavity lasers using rate equations. IEEE J Quant Electron 1991;27:2386-2396.
-
(1991)
IEEE J Quant Electron
, vol.27
, pp. 2386-2396
-
-
Björk, G.1
Yamamoto, Y.2
-
3
-
-
0028546719
-
Photon statistics of a cavity-QED laser: A comment on the laser-phase-transition analogy
-
Rice PR, Carmichael HJ. Photon statistics of a cavity-QED laser: a comment on the laser-phase-transition analogy. Phys Rev A 1994;50:4318-4329.
-
(1994)
Phys Rev A
, vol.50
, pp. 4318-4329
-
-
Rice, P.R.1
Carmichael, H.J.2
-
4
-
-
79952776161
-
Power consumption and energy efficiency in the internet
-
Hinton K, Baliga J, Feng M, Ayre R, Tucker RS. Power consumption and energy efficiency in the internet. IEEE Network 2011;25:6-12.
-
(2011)
IEEE Network
, vol.25
, pp. 6-12
-
-
Hinton, K.1
Baliga, J.2
Feng, M.3
Ayre, R.4
Tucker, R.S.5
-
5
-
-
33748456096
-
Lasing in high-Q quantum-dot micropillar cavities
-
Reitzenstein S, Bazhenov A, Gorbunov A, Hofmann C, Münch S et al. Lasing in high-Q quantum-dot micropillar cavities. Appl Phys Lett 2006;89:051107.
-
(2006)
Appl Phys Lett
, vol.89
, pp. 051107
-
-
Reitzenstein, S.1
Bazhenov, A.2
Gorbunov, A.3
Hofmann, C.4
Münch, S.5
-
6
-
-
33645527561
-
Self-tuned quantum dot gain in photonic crystal lasers
-
Strauf S, Hennessy K, Rakher MT, Choi YS, Badolato A et al. Self-tuned quantum dot gain in photonic crystal lasers. Phys Rev Lett 2006;96:127404.
-
(2006)
Phys Rev Lett
, vol.96
, pp. 127404
-
-
Strauf, S.1
Hennessy, K.2
Rakher, M.T.3
Choi, Y.S.4
Badolato, A.5
-
7
-
-
33846478312
-
Photon statistics of semiconductor microcavity lasers
-
Ulrich SM, Gies C, Ates S, Wiersig J, Reitzenstein S et al. Photon statistics of semiconductor microcavity lasers. Phys Rev Lett 2007;98:043906-4.
-
(2007)
Phys Rev Lett
, vol.98
, pp. 043906-043904
-
-
Ulrich, S.M.1
Gies, C.2
Ates, S.3
Wiersig, J.4
Reitzenstein, S.5
-
8
-
-
33947277488
-
Influence of a single quantum dot state on the characteristics of a microdisk laser
-
Xie ZG, Götzinger S, Fang W, Cao H, Solomon GS. Influence of a single quantum dot state on the characteristics of a microdisk laser. Phys Rev Lett 2007;98:117401.
-
(2007)
Phys Rev Lett
, vol.98
, pp. 117401
-
-
Xie, Z.G.1
Götzinger, S.2
Fang, W.3
Cao, H.4
Solomon, G.S.5
-
9
-
-
41649099677
-
Single quantum dot controlled lasing effects in high-Q micropillar cavities
-
DOI 10.1364/OE.16.004848
-
Reitzenstein S, Böckler C, Bazhenov A, Gorbunov A, Löffler A et al. Single quantum dot controlled lasing effects in high-Qmicropillar cavities. Opt Express 2008;16:4848-4857. (Pubitemid 351483447)
-
(2008)
Optics Express
, vol.16
, Issue.7
, pp. 4848-4857
-
-
Reitzenstein, S.1
Bockler, C.2
Bazhenov, A.3
Gorbunov, A.4
Loffler, A.5
Kamp, M.6
Kulakovskii, V.D.7
Forchel, A.8
-
10
-
-
77950521497
-
Laser oscillation in a strongly coupled single-quantum-dot-nanocavity system
-
Nomura M, Kumagai N, Iwamoto S, Ota Y, Arakawa Y. Laser oscillation in a strongly coupled single-quantum-dot-nanocavity system. Nat Phys 2010;6:279-283.
-
(2010)
Nat Phys
, vol.6
, pp. 279-283
-
-
Nomura, M.1
Kumagai, N.2
Iwamoto, S.3
Ota, Y.4
Arakawa, Y.5
-
11
-
-
67650497839
-
Direct observation of correlations between individual photon emission events of a microcavity laser
-
Wiersig J, Gies C, Jahnke F, Assmann M, Berstermann T et al. Direct observation of correlations between individual photon emission events of a microcavity laser. Nature 2009;460:245-249.
-
(2009)
Nature
, vol.460
, pp. 245-249
-
-
Wiersig, J.1
Gies, C.2
Jahnke, F.3
Assmann, M.4
Berstermann, T.5
-
13
-
-
0028090530
-
Microstructured semiconductor lasers for high-speed information processing
-
DOI 10.1038/371571a0
-
Gourley PL. Microstructured semiconductor lasers for high-speed information processing. Nature 1994:371:571-577. (Pubitemid 24316672)
-
(1994)
Nature
, vol.371
, Issue.6498
, pp. 571-577
-
-
Gourley, P.L.1
-
14
-
-
0042968717
-
Optical microcavities
-
DOI 10.1038/nature01939
-
Vahala KJ. Optical microcavities. Nature 2003;424:839-846. (Pubitemid 37021719)
-
(2003)
Nature
, vol.424
, Issue.6950
, pp. 839-846
-
-
Vahala, K.J.1
-
15
-
-
4043152866
-
Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals
-
DOI 10.1038/nature02772
-
Lodahl P, van Driel AF, Nikolaev IS, Irman A, Overgaag K et al. Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals. Nature 2004;430:654-657. (Pubitemid 39061676)
-
(2004)
Nature
, vol.430
, Issue.7000
, pp. 654-657
-
-
Lodahl, P.1
Van Driel, A.F.2
Nikolaev, I.S.3
Irman, A.4
Overgaag, K.5
Vanmaekelbergh, D.6
Vos, W.L.7
-
16
-
-
0037449876
-
Surface plasmon amplicfication by stimulated emission of radiation: Quantum generation of coherent surface plasmon in nanosystems
-
Bergman DJ, Stockman MI. Surface plasmon amplicfication by stimulated emission of radiation: quantum generation of coherent surface plasmon in nanosystems. Phys Rev Lett 2003;90:027402.
-
(2003)
Phys Rev Lett
, vol.90
, pp. 027402
-
-
Bergman, D.J.1
Stockman, M.I.2
-
17
-
-
0000752673
-
Spontaneous emission probabilities at radio frequencies
-
Purcell EM. Spontaneous emission probabilities at radio frequencies. Phys Rev 1946;69:681.
-
(1946)
Phys Rev
, vol.69
, pp. 681
-
-
Purcell, E.M.1
-
18
-
-
0001002261
-
Inhibited spontaneous emission
-
Kleppner D. Inhibited spontaneous emission. Phys Rev Lett 1981;47:233-236.
-
(1981)
Phys Rev Lett
, vol.47
, pp. 233-236
-
-
Kleppner, D.1
-
19
-
-
84863012502
-
Thresholdless nanoscale coaxial lasers
-
Khajavikhan M, Simic A, Katz M, Lee JH, Slutsky B et al. Thresholdless nanoscale coaxial lasers. Nature 2012;482:204-207.
-
(2012)
Nature
, vol.482
, pp. 204-207
-
-
Khajavikhan, M.1
Simic, A.2
Katz, M.3
Lee, J.H.4
Slutsky, B.5
-
20
-
-
11944250627
-
Physics and device applications of optical microcavities
-
Yokoyama H. Physics and device applications of optical microcavities. Science 1992;256:66-70.
-
(1992)
Science
, vol.256
, pp. 66-70
-
-
Yokoyama, H.1
-
21
-
-
0001155787
-
Anomalous spontaneous-stimulated-decay phase transition and zero-threshold laser action in a microscopic cavity
-
De Martini F, Jacobovitz GR. Anomalous spontaneous-stimulated-decay phase transition and zero-threshold laser action in a microscopic cavity. Phys Rev Lett 1988;60:1711-1714.
-
(1988)
Phys Rev Lett
, vol.60
, pp. 1711-1714
-
-
De Martini, F.1
Jacobovitz, G.R.2
-
22
-
-
0141716851
-
Single atom lases orderly light
-
DOI 10.1038/425246a
-
Carmichael H, Orozco LA. Quantum optics: single atom lases orderly light. Nature 2003;425:246-247. (Pubitemid 37158387)
-
(2003)
Nature
, vol.425
, Issue.6955
, pp. 246-247
-
-
Carmichael, H.1
Orozco, L.A.2
-
23
-
-
79960520779
-
The single quantum dot-laser: Lasing and strong coupling in the high-excitation regime
-
Gies C, Florian M, Gartner P, Jahnke F. The single quantum dot-laser: lasing and strong coupling in the high-excitation regime. Opt Exp 2011;19:14370-14388.
-
(2011)
Opt Exp
, vol.19
, pp. 14370-14388
-
-
Gies, C.1
Florian, M.2
Gartner, P.3
Jahnke, F.4
-
24
-
-
79960637407
-
Resonant self-pulsations in coupled nonlinear microcavities
-
Grigoriev V, Biancalana F. Resonant self-pulsations in coupled nonlinear microcavities. Phys Rev A 2011;83:043816.
-
(2011)
Phys Rev A
, vol.83
, pp. 043816
-
-
Grigoriev, V.1
Biancalana, F.2
-
25
-
-
84878536432
-
Quantum plasmonics
-
Tame MS, McEnery KR, Özdemir ŞK, Lee J, Maier SA et al. Quantum plasmonics. Nat Phys 2013;9:329-340.
-
(2013)
Nat Phys
, vol.9
, pp. 329-340
-
-
Tame, M.S.1
McEnery, K.R.2
Özdemir, S.K.3
Lee, J.4
Maier, S.A.5
-
26
-
-
84880553256
-
Metallic subwavelength-cavity semiconductor nanolasers
-
doi:10.1038/lsa.2012.20
-
Ding K, Ning CZ. Metallic subwavelength-cavity semiconductor nanolasers. Light Sci Appl 2012;1:e20; doi:10.1038/lsa.2012.20.
-
(2012)
Light Sci Appl
, vol.1
-
-
Ding, K.1
Ning, C.Z.2
-
27
-
-
84892153634
-
Eleven nanometer alignment precision of a plasmonic nanoantenna with a self-assembled GaAs quantum dot
-
Pfeiffer M, Lindfors K, Zhang H, Fenk B, Phillipp F et al. Eleven nanometer alignment precision of a plasmonic nanoantenna with a self-assembled GaAs quantum dot. Nano Letter 2014;14:197-201.
-
(2014)
Nano Letter
, vol.14
, pp. 197-201
-
-
Pfeiffer, M.1
Lindfors, K.2
Zhang, H.3
Fenk, B.4
Phillipp, F.5
-
30
-
-
35949037212
-
Analogy between the laser threshold region and a secondorder phase transition
-
DeGiorgio V, Scully MO. Analogy between the laser threshold region and a secondorder phase transition. Phys Rev A 1970;2:1170-1177.
-
(1970)
Phys Rev A
, vol.2
, pp. 1170-1177
-
-
DeGiorgio, V.1
Scully, M.O.2
-
31
-
-
83655164872
-
Higher-order photon correlations in pulsed photonic crystal nanolaser
-
R
-
Elvira D, Hachair X, Verma VB, Braive R, Beaudoin G et al. Higher-order photon correlations in pulsed photonic crystal nanolaser. Phys Rev A 2011;84:061802 (R).
-
(2011)
Phys Rev A
, vol.84
, pp. 061802
-
-
Elvira, D.1
Hachair, X.2
Verma, V.B.3
Braive, R.4
Beaudoin, G.5
-
32
-
-
0001445002
-
Microcavity semiconductor laser with enhanced spontaneous emission
-
Yamamoto Y, Machida S, Björk G. Microcavity semiconductor laser with enhanced spontaneous emission. Phys Rev A 1991;44:657-668.
-
(1991)
Phys Rev A
, vol.44
, pp. 657-668
-
-
Yamamoto, Y.1
Machida, S.2
Björk, G.3
-
34
-
-
84866427674
-
How small can "Nano" be in a "Nanolaser"?
-
Khurgin JB, Sun G. How small can "Nano" be in a "Nanolaser"? Nanoph 2012;1:3-8.
-
(2012)
Nanoph
, vol.1
, pp. 3-8
-
-
Khurgin, J.B.1
Sun, G.2
-
36
-
-
84878333569
-
On the physics of semiconductor quantum dots for applications in lasers and quantum optics
-
Chow WW, Jahnke F. On the physics of semiconductor quantum dots for applications in lasers and quantum optics. Prog Quantum Electron 2013;37:109-184.
-
(2013)
Prog Quantum Electron
, vol.37
, pp. 109-184
-
-
Chow, W.W.1
Jahnke, F.2
-
37
-
-
33846384024
-
Semiconductor model for quantum-dot based microcavity lasers
-
Gies C, Wiersig J, Lorke M, Jahnke F. Semiconductor model for quantum-dot based microcavity lasers. Phys Rev A 2007;75:013803.
-
(2007)
Phys Rev A
, vol.75
, pp. 013803
-
-
Gies, C.1
Wiersig, J.2
Lorke, M.3
Jahnke, F.4
-
38
-
-
84905458185
-
-
accessed 14 November 2007
-
Device Simulator. Nextnano: http://www.wsi.tum.de/nextnano (accessed 14 November 2007).
-
-
-
-
39
-
-
84923199214
-
Comparison of quantum and semiclassical radiation theories with application to the beam maser
-
Jaynes E, Cummings FW. Comparison of quantum and semiclassical radiation theories with application to the beam maser. Proc IEEE 1963;51:89-109.
-
(1963)
Proc IEEE
, vol.51
, pp. 89-109
-
-
Jaynes, E.1
Cummings, F.W.2
-
41
-
-
17644421402
-
Theory of semiconductor quantum-dot laser dynamics
-
DOI 10.1109/JQE.2005.843948
-
Chow WW, Koch SW. Theory of semiconductor quantum-dot laser dynamics. IEEE J Quantum Elect 2005;41:495-505. (Pubitemid 40555781)
-
(2005)
IEEE Journal of Quantum Electronics
, vol.41
, Issue.4
, pp. 495-505
-
-
Chow, W.W.1
Koch, S.W.2
-
43
-
-
55449125518
-
Influence of the spontaneous optical emission factor β on the first-order coherence of a semiconductor microcavity laser
-
Ates S, Gies C, Ulrich SM, Wiersig J, Reitzenstein S et al. Influence of the spontaneous optical emission factor β on the first-order coherence of a semiconductor microcavity laser. Phys Rev B 2008;78:155319.
-
(2008)
Phys Rev B
, vol.78
, pp. 155319
-
-
Ates, S.1
Gies, C.2
Ulrich, S.M.3
Wiersig, J.4
Reitzenstein, S.5
-
44
-
-
0035804255
-
A scheme for efficient quantum computation with linear optics
-
DOI 10.1038/35051009
-
Knill E, Laflamme R, Milburn GJ. A scheme for efficient quantum computation with linear optics. Nature 2001;409:46-52. (Pubitemid 32098618)
-
(2001)
Nature
, vol.409
, Issue.6816
, pp. 46-52
-
-
Knill, E.1
Laflamme, R.2
Milburn, G.J.3
-
45
-
-
84879331571
-
Integrated photonic systems based on transformation optics enabled gradient index devices
-
doi:10.1038/lsa.2012.38
-
Wu Q, Turpin JP, Werner DH. Integrated photonic systems based on transformation optics enabled gradient index devices. Light Sci Appl 2012;1:e38; doi:10.1038/lsa.2012.38.
-
(2012)
Light Sci Appl
, vol.1
-
-
Wu, Q.1
Turpin, J.P.2
Werner, D.H.3
|