메뉴 건너뛰기




Volumn , Issue , 2014, Pages

Enhancing indoor positioning based on partitioning cascade machine learning models

Author keywords

indoor positioning; machine learning; wireless device

Indexed keywords

CLUSTERING ALGORITHMS; DECISION TREES; LEARNING ALGORITHMS; NEURAL NETWORKS; TRACKING (POSITION);

EID: 84905395547     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ECTICon.2014.6839831     Document Type: Conference Paper
Times cited : (14)

References (16)
  • 2
    • 34547554894 scopus 로고    scopus 로고
    • Performance comparison of indoor positioning techniques based on location fingerprinting in wireless networks
    • T. N. Lin, P. C. Lin. Performance comparison of indoor positioning techniques based on location fingerprinting in wireless networks, Wireless Networks Communications and Mobile Computing. 2005;1569-1574.
    • (2005) Wireless Networks Communications and Mobile Computing , pp. 1569-1574
    • Lin, T.N.1    Lin, P.C.2
  • 3
    • 67650706217 scopus 로고    scopus 로고
    • Location determination using WiFi fingerprinting versus Wi-Fi trilateration
    • E. Mok, G. Retscher. Location determination using WiFi fingerprinting versus Wi-Fi trilateration. Journal of Location Based Services. 2007;1(2):145-159.
    • (2007) Journal of Location Based Services , vol.1 , Issue.2 , pp. 145-159
    • Mok, E.1    Retscher, G.2
  • 4
    • 67650822590 scopus 로고    scopus 로고
    • Overview of current indoor positioning systems
    • R. Mautz. Overview of current indoor positioning systems. Geodezijairkartografija. 2009;35(1):18-22.
    • (2009) Geodezijairkartografija , vol.35 , Issue.1 , pp. 18-22
    • Mautz, R.1
  • 5
    • 0033872896 scopus 로고    scopus 로고
    • RADAR: An in-building RF-based user location and tracking system
    • P. Bahl, V. N. Padmanabhan. RADAR: An in-building RF-based user location and tracking system. In: INFOCOM 2000. Nineteenth Annual Joint Conference of the IEEE Computer and Communications Societies. Proceedings. IEEE. IEEE, 2000. p. 775-784. (Pubitemid 30584527)
    • (2000) Proceedings - IEEE INFOCOM , vol.2 , pp. 775-784
    • Bahl, P.1    Padmanabhan, V.N.2
  • 7
    • 25844491753 scopus 로고    scopus 로고
    • Bayesian indoor positioning systems
    • Proceedings - IEEE INFOCOM 2005. The Conference on Computer Communications - 24th Annual Joint Conference of the IEEE Computer and Communications Societies
    • D. Madigan, E. Einahrawy, R. P. Martin. Bayesian indoor positioning systems. In: INFOCOM 2005. 24th Annual Joint Conference of the IEEE Computer and Communications Societies. Proceedings IEEE. IEEE, 2005. p. 1217-1227. (Pubitemid 41390774)
    • (2005) Proceedings - IEEE INFOCOM , vol.2 , pp. 1217-1227
    • Madigan, D.1    Elnahrawy, E.2    Martin, R.P.3    Ju, W.-H.4    Krishnan, P.5    Krishnakumar, A.S.6
  • 8
    • 34648836762 scopus 로고    scopus 로고
    • Decision tree approach to estimate user location in WLAN based on location fingerprinting
    • IEEE
    • O. M. Badawy, M. A. B. Hasan. Decision tree approach to estimate user location in WLAN based on location fingerprinting. In: Radio Science Conference, 2007. NRSC 2007. National. IEEE, 2007. p. 1-10.
    • (2007) Radio Science Conference, 2007. NRSC 2007. National , pp. 1-10
    • Badawy, O.M.1    Hasan, M.A.B.2
  • 9
    • 14644436970 scopus 로고    scopus 로고
    • Statistical learning theory for location fingerprinting in wireless LANs
    • DOI 10.1016/j.comnet.2004.09.004, PII S1389128604002610
    • M. Brunato, R. Battit. Statistical learning theory for location fingerprinting in wireless LANs. Computer Networks, 2005, 47. 6:825-845. (Pubitemid 40308680)
    • (2005) Computer Networks , vol.47 , Issue.6 , pp. 825-845
    • Brunato, M.1    Battiti, R.2
  • 14
    • 33744584654 scopus 로고
    • Induction of decision trees
    • J. R. Quinlan. Induction of decision trees. Machine learning, 1986, 1. 1:81-106.
    • (1986) Machine Learning , vol.1 , Issue.1 , pp. 81-106
    • Quinlan, J.R.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.