메뉴 건너뛰기




Volumn 2, Issue , 2005, Pages 1217-1227

Bayesian indoor positioning systems

Author keywords

Bayesian graphical models; Experimentation with real networks Testbed; Localization; RSS fingerprinting; Statistics; WLAN

Indexed keywords

BAYESIAN GRAPHICAL MODELS; EXPERIMENTATION WITH REAL NETWORKS/TESTBEDS; RSS/FINGERPRINTING; WLAN;

EID: 25844491753     PISSN: 0743166X     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/INFCOM.2005.1498348     Document Type: Conference Paper
Times cited : (356)

References (30)
  • 2
    • 0003676495 scopus 로고    scopus 로고
    • Enhancements to the RADAR user location and tracking system
    • Microsoft Research Technical Report, February 2000
    • P. Bahl, V.N. Padmanabhan, and A. Balachandran. Enhancements to the RADAR user location and tracking system. Technical report, Microsoft Research Technical Report, February 2000, 2000.
    • (2000) Technical Report
    • Bahl, P.1    Padmanabhan, V.N.2    Balachandran, A.3
  • 3
    • 8344262470 scopus 로고    scopus 로고
    • Statistical learning theory for location fingerprinting in wireless LANs
    • Dipartimento di Informaticae Telecomunicazioni, Universita di Trento
    • R. Battiti, M. Brunato, and A. Villani. Statistical learning theory for location fingerprinting in wireless LANs. Technical Report DIT-020086, Dipartimento di Informaticae Telecomunicazioni, Universita di Trento, 2002.
    • (2002) Technical Report , vol.DIT-020086
    • Battiti, R.1    Brunato, M.2    Villani, A.3
  • 4
    • 84880841685 scopus 로고    scopus 로고
    • A learning algorithm for localizing people based on wireless signal strength that uses labeled and unlabeled data
    • M. Berna, B. Lisien, B. Sellner, G. Gordon, F. Pfenning, and S. Thrun. A learning algorithm for localizing people based on wireless signal strength that uses labeled and unlabeled data. In Proceedings of IJCAI 03, pages 1427-1428, 2003.
    • (2003) Proceedings of IJCAI 03 , pp. 1427-1428
    • Berna, M.1    Lisien, B.2    Sellner, B.3    Gordon, G.4    Pfenning, F.5    Thrun, S.6
  • 8
    • 34249761849 scopus 로고
    • Learning bayesian networks: The combination of knowledge and statistical data
    • David Heckerman, Dan Geiger, and David M. Chickering. Learning bayesian networks: The combination of knowledge and statistical data. Machine Learning, 20:197, 1995.
    • (1995) Machine Learning , vol.20 , pp. 197
    • Heckerman, D.1    Geiger, D.2    Chickering, D.M.3
  • 10
    • 0037930557 scopus 로고    scopus 로고
    • Casting the wireless sensor net
    • MIT's Magazine of Innovation, July/August 2003
    • G.T. Huang. Casting the wireless sensor net. Technology Review, MIT's Magazine of Innovation, July/August 2003, pages 51-56, 2003.
    • (2003) Technology Review , pp. 51-56
    • Huang, G.T.1
  • 11
    • 0042685161 scopus 로고    scopus 로고
    • Bayesian parameter estimation via variational methods
    • T. Jaakola and M.I. Jordan. Bayesian parameter estimation via variational methods. Statistics and Computing, 10:25-37, 2000.
    • (2000) Statistics and Computing , vol.10 , pp. 25-37
    • Jaakola, T.1    Jordan, M.I.2
  • 12
    • 8344236727 scopus 로고    scopus 로고
    • A system for LEASE: System location estimation assisted by stationary emitters for indoor rf wireless networks
    • P. Krishnan, A.S. Krishnakumar, W. Ju, C. Mallows, and S. Ganu. A system for LEASE: System location estimation assisted by stationary emitters for indoor rf wireless networks. In Proceedings of IEEE Infocom 2004, 2004.
    • (2004) Proceedings of IEEE Infocom 2004
    • Krishnan, P.1    Krishnakumar, A.S.2    Ju, W.3    Mallows, C.4    Ganu, S.5
  • 15
  • 19
    • 0037527978 scopus 로고    scopus 로고
    • A sequential monte carlo method for bayesian analysis of massive datasets
    • G. Ridgeway and D. Madigan. A sequential monte carlo method for bayesian analysis of massive datasets. Journal of Knowledge Discovery and Data Mining, 7:301-319, 2003.
    • (2003) Journal of Knowledge Discovery and Data Mining , vol.7 , pp. 301-319
    • Ridgeway, G.1    Madigan, D.2
  • 23
    • 0041173474 scopus 로고    scopus 로고
    • Bayesian graphical modelling: A case-study in monitoring health outcomes
    • David J. Spiegelhalter. Bayesian graphical modelling: A case-study in monitoring health outcomes. Applied Statistics, 47(1):115-133, 1998.
    • (1998) Applied Statistics , vol.47 , Issue.1 , pp. 115-133
    • Spiegelhalter, D.J.1
  • 24
    • 84986980101 scopus 로고
    • Sequential updating of conditional probabilities on directed graphical stuctures
    • D.J. Spiegelhalter and S.L. Lauritzen. Sequential updating of conditional probabilities on directed graphical stuctures. Networks, 20:579-605, 1990.
    • (1990) Networks , vol.20 , pp. 579-605
    • Spiegelhalter, D.J.1    Lauritzen, S.L.2
  • 26
    • 0004280826 scopus 로고    scopus 로고
    • Probabilistic algorithms in robotics
    • Computer Science Department, Carnegie Mellon University
    • S. Thrun. Probabilistic algorithms in robotics. Technical Report CMU-CS-00-126, Computer Science Department, Carnegie Mellon University, 2000.
    • (2000) Technical Report , vol.CMU-CS-00-126
    • Thrun, S.1
  • 28
    • 0032165502 scopus 로고    scopus 로고
    • Designing a positioning system for finding things and people indoors
    • J. Werb and C, Lanzl. Designing a positioning system for finding things and people indoors. IEEE Spectrum, pages 71-78, 1998.
    • (1998) IEEE Spectrum , pp. 71-78
    • Werb, J.1    Lanzl, C.2
  • 30
    • 8344251722 scopus 로고    scopus 로고
    • Handling samples correlation in the horus system
    • M. Youssef and A.K. Agrawala. Handling samples correlation in the horus system. In IEEE Infocom, 2004.
    • (2004) IEEE Infocom
    • Youssef, M.1    Agrawala, A.K.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.