메뉴 건너뛰기




Volumn , Issue , 2014, Pages 7644-7648

Fine context, low-rank, softplus deep neural networks for mobile speech recognition

Author keywords

Deep neural networks; embedded recognizer; hybrid neural network speech recognition; low rank approximation; mobile speech recognition; singular value decomposition; softplus nonlinearity; Voice Search

Indexed keywords

SIGNAL PROCESSING; SINGULAR VALUE DECOMPOSITION;

EID: 84905284804     PISSN: 15206149     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICASSP.2014.6855087     Document Type: Conference Paper
Times cited : (24)

References (11)
  • 1
    • 84906251664 scopus 로고    scopus 로고
    • Accurate and compact large vocabulary speech recognition on mobile devices
    • X. Lei, A. Senior, A. Gruenstein, and J. Sorenson, "Accurate and compact large vocabulary speech recognition on mobile devices, " in Proc. Interspeech, 2013.
    • (2013) Proc. Interspeech
    • Lei, X.1    Senior, A.2    Gruenstein, A.3    Sorenson, J.4
  • 2
    • 84893703162 scopus 로고    scopus 로고
    • Large scale deep neural network acoustic modeling with semi-supervised training data for YouTube video transcription
    • H. Liao, E. McDermott, and A. Senior, "Large scale deep neural network acoustic modeling with semi-supervised training data for YouTube video transcription, " in Proc. ASRU, 2013.
    • (2013) Proc. ASRU
    • Liao, H.1    McDermott, E.2    Senior, A.3
  • 4
    • 84890454527 scopus 로고    scopus 로고
    • Low-rank matrix factorization for deep neural network training with high-dimensional output targets
    • T. N. Sainath, B. Kingsbury, V. Sindhwani, E. Arisoy, and B. Ramabhadran, "Low-rank matrix factorization for deep neural network training with high-dimensional output targets, " in Proc. ICASSP, 2013.
    • (2013) Proc. ICASSP
    • Sainath, T.N.1    Kingsbury, B.2    Sindhwani, V.3    Arisoy, E.4    Ramabhadran, B.5
  • 5
    • 84887388950 scopus 로고    scopus 로고
    • An empirical study of learning rates in deep neural networks for speech recognition
    • A. Senior, G. Heigold, M. Ranzato, and K. Yang, "An empirical study of learning rates in deep neural networks for speech recognition, " in Proc. ICASSP, 2013.
    • (2013) Proc. ICASSP
    • Senior, A.1    Heigold, G.2    Ranzato, M.3    Yang, K.4
  • 7
    • 84906227589 scopus 로고    scopus 로고
    • Restructuring of deep neural network acoustic models with singular value decomposition
    • J. Xue, J. Li, and Y. Gong, "Restructuring of deep neural network acoustic models with singular value decomposition, " in Proc. Interspeech, 2013.
    • (2013) Proc. Interspeech
    • Xue, J.1    Li, J.2    Gong, Y.3
  • 10
    • 84867606668 scopus 로고    scopus 로고
    • Exploiting sparseness in deep neural networks for large vocabulary speech recognition
    • D. Yu, F. Seide, G. Li, and L. Deng, "Exploiting sparseness in deep neural networks for large vocabulary speech recognition, " in ICASSP, 2012.
    • (2012) ICASSP
    • Yu, D.1    Seide, F.2    Li, G.3    Deng, L.4
  • 11
    • 84905270596 scopus 로고    scopus 로고
    • Cross-entropy vs squared error training: A theoretical and experimental comparison
    • P. Golik, P. Doetsch, and H. Ney, "Cross-entropy vs. squared error training: a theoretical and experimental comparison, " in Proc. Interspeech, 2013.
    • (2013) Proc. Interspeech
    • Golik, P.1    Doetsch, P.2    Ney, H.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.